Qiao Chexuan, Rolfe Emanuella De Lucia, Mak Ethan, Sengupta Akash, Powell Richard, Watson Laura P E, Heymsfield Steven B, Shepherd John A, Wareham Nicholas, Brage Soren, Cipolla Roberto
Department of Engineering, University of Cambridge, Cambridge, UK.
MRC Epidemiology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 OQQ, UK.
NPJ Digit Med. 2024 Oct 23;7(1):298. doi: 10.1038/s41746-024-01289-0.
Accurate assessment of body composition is essential for evaluating the risk of chronic disease. 3D body shape, obtainable using smartphones, correlates strongly with body composition. We present a novel method that fits a 3D body mesh to a dual-energy X-ray absorptiometry (DXA) silhouette (emulating a single photograph) paired with anthropometric traits, and apply it to the multi-phase Fenland study comprising 12,435 adults. Using baseline data, we derive models predicting total and regional body composition metrics from these meshes. In Fenland follow-up data, all metrics were predicted with high correlations (r > 0.86). We also evaluate a smartphone app which reconstructs a 3D mesh from phone images to predict body composition metrics; this analysis also showed strong correlations (r > 0.84) for all metrics. The 3D body shape approach is a valid alternative to medical imaging that could offer accessible health parameters for monitoring the efficacy of lifestyle intervention programmes.
准确评估身体成分对于评估慢性病风险至关重要。利用智能手机可获取的三维身体形状与身体成分密切相关。我们提出了一种新方法,将三维身体网格与双能X线吸收法(DXA)轮廓(模拟单张照片)以及人体测量特征进行匹配,并将其应用于包含12435名成年人的多阶段芬兰研究。利用基线数据,我们从这些网格中得出预测全身和局部身体成分指标的模型。在芬兰随访数据中,所有指标的预测相关性都很高(r>0.86)。我们还评估了一款智能手机应用程序,该程序可从手机图像重建三维网格以预测身体成分指标;该分析也显示所有指标的相关性都很强(r>0.84)。三维身体形状方法是医学成像的一种有效替代方法,可为监测生活方式干预计划的效果提供可获取的健康参数。