Fluidda N.V., Groeningenlei 132, 2550, Kontich, Belgium.
Department of Respiratory Medicine, University of Antwerp, 2610, Antwerpen, Belgium.
Sci Rep. 2024 Oct 23;14(1):24965. doi: 10.1038/s41598-024-75578-9.
A rapid data-driven method for determining regional deposition of inhaled medication aerosols in human airways is presented, which is patient specific. Inhalation patterns, device characteristics, and aerodynamic particle size distribution of medications are considered. The method is developed using dimensional analysis and Buckingham Pi theorem, and provides total, regional, and lobar distributions of aerosol deposition. 34 dimensionless quantities are selected, of which 22 encode features of the airway trees and segmented lobes, 14 pertain to the device and the drug formulation, and 13 the inhalation profile of the subject. The dimensionless correlations are obtained using a large database of computational fluid dynamics results on patient specific airways. The intraclass correlation coefficient between the current method and its training dataset is 0.92. The difference between the predicted average lobar deposition in the six asthma patients and the in-vivo data is 1.3%. The model has the potential to offer insights into the effectiveness of personalized drug delivery in clinical settings and can aid in drug development cycles.
本文提出了一种快速的数据驱动方法,用于确定吸入式药物气溶胶在人体气道中的局部沉积,该方法具有个体针对性。考虑了吸入模式、装置特性和药物的空气动力学粒径分布。该方法通过量纲分析和 Buckingham Pi 定理开发,提供了气溶胶沉积的总体、局部和叶区分布。选择了 34 个无量纲量,其中 22 个编码气道树和分段叶区的特征,14 个与装置和药物配方有关,13 个与受试者的吸入特征有关。无量纲相关性是使用针对特定患者气道的大量计算流体动力学结果数据库获得的。当前方法与其训练数据集之间的组内相关系数为 0.92。六位哮喘患者的预测平均叶区沉积与体内数据之间的差异为 1.3%。该模型有可能为个性化药物输送在临床环境中的效果提供深入了解,并有助于药物开发周期。