Suppr超能文献

电子健康记录中产后抑郁症机器学习风险预测模型的实施

Implementation of a Machine Learning Risk Prediction Model for Postpartum Depression in the Electronic Health Records.

作者信息

Zhang Yiye, Joly Rochelle, Beecy Ashley N, Principe Samen, Satpathy Sujit, Gore Anatoly, Reilly Tom, Lang Mitchel, Sathi Nagi, Uy Carlos, Adams Matt, Israel Mark

机构信息

Weill Cornell Medicine, New York, NY.

NewYork-Presbyterian Hospitals, New York, NY.

出版信息

AMIA Jt Summits Transl Sci Proc. 2024 Oct 21;2024:1057-1066. eCollection 2024.

Abstract

This study describes the deployment process of an AI-driven clinical decision support (CDS) system to support postpartum depression (PPD) prevention, diagnosis and management. Central to this CDS is an L2-regularized logistic regression model trained on electronic health record (EHR) data at an academic medical center, and subsequently refined through a broader dataset from a consortium to ensure its generalizability and fairness. The deployment architecture leveraged Microsoft Azure to facilitate a scalable, secure, and efficient operational framework. We used Fast Healthcare Interoperability Resources (FHIR) for data extraction and ingestion between the two systems. Continuous Integration/Continuous Deployment pipelines automated the deployment and ongoing maintenance, ensuring the system's adaptability to evolving clinical data. Along the technical preparation, we focused on a seamless integration of the CDS within the clinical workflow, presenting risk assessment directly within the clinician schedule and providing options for subsequent actions. The developed CDS is expected to drive a PPD clinical pathway to enable efficient PPD risk management.

摘要

本研究描述了一个由人工智能驱动的临床决策支持(CDS)系统的部署过程,以支持产后抑郁症(PPD)的预防、诊断和管理。该CDS的核心是一个在学术医疗中心的电子健康记录(EHR)数据上训练的L2正则化逻辑回归模型,随后通过一个联盟的更广泛数据集进行优化,以确保其通用性和公平性。部署架构利用微软Azure来促进一个可扩展、安全且高效的运营框架。我们使用快速医疗互操作性资源(FHIR)在两个系统之间进行数据提取和摄取。持续集成/持续部署管道自动执行部署和持续维护,确保系统适应不断演变的临床数据。在技术准备过程中,我们专注于将CDS无缝集成到临床工作流程中,直接在临床医生日程中呈现风险评估,并为后续行动提供选项。所开发的CDS有望推动PPD临床路径,以实现高效的PPD风险管理。

相似文献

1
5
Toward a responsible future: recommendations for AI-enabled clinical decision support.
J Am Med Inform Assoc. 2024 Nov 1;31(11):2730-2739. doi: 10.1093/jamia/ocae209.
6
Full-mouth treatment modalities (within 24 hours) for periodontitis in adults.
Cochrane Database Syst Rev. 2022 Jun 28;6(6):CD004622. doi: 10.1002/14651858.CD004622.pub4.
7
Gaps in Artificial Intelligence Research for Rural Health in the United States: A Scoping Review.
medRxiv. 2025 Jun 27:2025.06.26.25330361. doi: 10.1101/2025.06.26.25330361.
9
Full-mouth treatment modalities (within 24 hours) for chronic periodontitis in adults.
Cochrane Database Syst Rev. 2015 Apr 17;2015(4):CD004622. doi: 10.1002/14651858.CD004622.pub3.
10
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.

引用本文的文献

1
Predictive Analysis of Postpartum Depression Using Machine Learning.
Healthcare (Basel). 2025 Apr 14;13(8):897. doi: 10.3390/healthcare13080897.

本文引用的文献

2
Burnout Related to Electronic Health Record Use in Primary Care.
J Prim Care Community Health. 2023 Jan-Dec;14:21501319231166921. doi: 10.1177/21501319231166921.
3
Experimental evidence of physician social preferences.
Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2112726119. doi: 10.1073/pnas.2112726119. Epub 2022 Jul 6.
4
Clinician Burnout Associated With Sex, Clinician Type, Work Culture, and Use of Electronic Health Records.
JAMA Netw Open. 2021 Apr 1;4(4):e215686. doi: 10.1001/jamanetworkopen.2021.5686.
5
Artificial Intelligence and Liability in Medicine: Balancing Safety and Innovation.
Milbank Q. 2021 Sep;99(3):629-647. doi: 10.1111/1468-0009.12504. Epub 2021 Apr 6.
7
Development and validation of a machine learning algorithm for predicting the risk of postpartum depression among pregnant women.
J Affect Disord. 2021 Jan 15;279:1-8. doi: 10.1016/j.jad.2020.09.113. Epub 2020 Sep 30.
8
Effectiveness of peer support intervention on perinatal depression: A systematic review and meta-analysis.
J Affect Disord. 2020 Nov 1;276:788-796. doi: 10.1016/j.jad.2020.06.048. Epub 2020 Jul 15.
9
From Genetics to Genomics: Facing the Liability Implications in Clinical Care.
J Law Med Ethics. 2020 Mar;48(1):11-43. doi: 10.1177/1073110520916994.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验