Zhang Yiye, Joly Rochelle, Beecy Ashley N, Principe Samen, Satpathy Sujit, Gore Anatoly, Reilly Tom, Lang Mitchel, Sathi Nagi, Uy Carlos, Adams Matt, Israel Mark
Weill Cornell Medicine, New York, NY.
NewYork-Presbyterian Hospitals, New York, NY.
AMIA Jt Summits Transl Sci Proc. 2024 Oct 21;2024:1057-1066. eCollection 2024.
This study describes the deployment process of an AI-driven clinical decision support (CDS) system to support postpartum depression (PPD) prevention, diagnosis and management. Central to this CDS is an L2-regularized logistic regression model trained on electronic health record (EHR) data at an academic medical center, and subsequently refined through a broader dataset from a consortium to ensure its generalizability and fairness. The deployment architecture leveraged Microsoft Azure to facilitate a scalable, secure, and efficient operational framework. We used Fast Healthcare Interoperability Resources (FHIR) for data extraction and ingestion between the two systems. Continuous Integration/Continuous Deployment pipelines automated the deployment and ongoing maintenance, ensuring the system's adaptability to evolving clinical data. Along the technical preparation, we focused on a seamless integration of the CDS within the clinical workflow, presenting risk assessment directly within the clinician schedule and providing options for subsequent actions. The developed CDS is expected to drive a PPD clinical pathway to enable efficient PPD risk management.
本研究描述了一个由人工智能驱动的临床决策支持(CDS)系统的部署过程,以支持产后抑郁症(PPD)的预防、诊断和管理。该CDS的核心是一个在学术医疗中心的电子健康记录(EHR)数据上训练的L2正则化逻辑回归模型,随后通过一个联盟的更广泛数据集进行优化,以确保其通用性和公平性。部署架构利用微软Azure来促进一个可扩展、安全且高效的运营框架。我们使用快速医疗互操作性资源(FHIR)在两个系统之间进行数据提取和摄取。持续集成/持续部署管道自动执行部署和持续维护,确保系统适应不断演变的临床数据。在技术准备过程中,我们专注于将CDS无缝集成到临床工作流程中,直接在临床医生日程中呈现风险评估,并为后续行动提供选项。所开发的CDS有望推动PPD临床路径,以实现高效的PPD风险管理。