Suppr超能文献

NiFe-LDH/3D GA复合材料在高效电催化水氧化中的界面协同效应

Interface Synergistic Effect of NiFe-LDH/3D GA Composites on Efficient Electrocatalytic Water Oxidation.

作者信息

Zhang Jiangcheng, Cao Qiuhan, Yu Xin, Yao Hu, Su Baolian, Guo Xiaohui

机构信息

Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, The College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.

Department of Inorganic Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.

出版信息

Nanomaterials (Basel). 2024 Oct 16;14(20):1661. doi: 10.3390/nano14201661.

Abstract

Currently, NiFe-LDH exhibits an excellent oxygen evolution reaction (OER) due to the interaction of the two metal elements on the layered double hydroxide (LDH) platform. However, such interaction is still insufficient to compensate for its poor electrical conductivity, limited number of active sites and sluggish dynamics. Herein, a feasible two-step hydrothermal strategy that involves coupling low-conductivity NiFe-LDH with 3D porous graphene aerogel (GA) is proposed. The optimized NiFe-LDH/GA (1:1) produced possesses a 257 mV (10 mA cm) overpotential and could operate stably for 56 h in an OER. Our investigation demonstrates that the NiFe-LDH/GA has a three-dimensional mesoporous structure, and that there is synergistic interaction between LDH and GA and interfacial reconstruction of NiOOH. Such an interface synergistic coupling effect promotes fast mass transfer and facilitates OER kinetics, and this work offers new insights into designing efficient and stable GA-based electrocatalysts.

摘要

目前,由于层状双氢氧化物(LDH)平台上两种金属元素的相互作用,镍铁层状双氢氧化物(NiFe-LDH)表现出优异的析氧反应(OER)性能。然而,这种相互作用仍不足以弥补其较差的导电性、有限的活性位点数量和缓慢的动力学。在此,提出了一种可行的两步水热策略,即将低导电性的NiFe-LDH与三维多孔石墨烯气凝胶(GA)耦合。制备的优化NiFe-LDH/GA(1:1)在10 mA cm²电流密度下的过电位为257 mV,并且在析氧反应中可以稳定运行56小时。我们的研究表明,NiFe-LDH/GA具有三维介孔结构,LDH与GA之间存在协同相互作用以及NiOOH的界面重构。这种界面协同耦合效应促进了快速传质并有利于析氧反应动力学,这项工作为设计高效稳定的基于GA的电催化剂提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a5/11510525/9bd5574c78a3/nanomaterials-14-01661-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验