Suppr超能文献

碘代 Fmoc-苯丙氨酸对金黄色葡萄球菌的抗生物膜和抗毒力潜力。

Antibiofilm and antivirulence potentials of iodinated fmoc-phenylalanine against Staphylococcus aureus.

机构信息

School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.

School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.

出版信息

Microb Pathog. 2024 Dec;197:107080. doi: 10.1016/j.micpath.2024.107080. Epub 2024 Oct 23.

Abstract

Staphylococcus aureus poses significant risks to public health due to its ability to form biofilm and produce virulence factors, contributing to the increase in antibiotic resistance and treatment complications. This emphasizes the urgent need for novel antimicrobial controls. Based on the premise that halogenation improves antimicrobial efficacy, this study investigated the ability of halogenated phenylalanine to effectively inhibit S. aureus biofilm formation and virulence activities. Among 29 halogenated compounds, Fmoc-4-iodo-phenylalanine (Fmoc-Iodo-Phe) displayed the highest antibiofilm effect against S. aureus, achieving 94.3 % reduction at 50 μg/mL. Microscopic studies confirmed its ability to prevent and disrupt mature biofilms. At 10 μg/mL, Fmoc-Iodo-Phe markedly inhibited virulence factors, such as cell surface hydrophobicity, hemolysin and slime production. It showed low propensity for resistance development and effectively inhibited biofilms formed by methicillin-resistant S. aureus (MRSA) and S. epidermidis, but was inactive against Gram-negative bacteria. Gene expression analysis complemented by molecular docking suggest that Fmoc-Iodo-Phe could target the AgrA quorum sensing cascade due to strong interactions with key residues at its DNA binding sites. Notably, it was non-cytotoxic in Caenorhabditis elegans model and satisfied drug-likeliness criteria based on ADMET prediction. Therefore, our findings position Fmoc-Iodo-Phe as a promising antimicrobial candidate against S. aureus infections, underscoring its potential as an alternative to traditional antibiotics.

摘要

金黄色葡萄球菌能够形成生物膜并产生毒力因子,导致抗生素耐药性增加和治疗并发症增加,因此对公共健康构成重大威胁。这强调了需要新型抗菌控制措施。基于卤化可以提高抗菌效果的前提,本研究探讨了卤化苯丙氨酸抑制金黄色葡萄球菌生物膜形成和毒力活性的能力。在 29 种卤化化合物中,Fmoc-4-碘苯丙氨酸(Fmoc-Iodo-Phe)对金黄色葡萄球菌表现出最高的抗生物膜作用,在 50μg/mL 时达到 94.3%的减少。显微镜研究证实了它预防和破坏成熟生物膜的能力。在 10μg/mL 时,Fmoc-Iodo-Phe 显著抑制了细胞表面疏水性、溶血素和粘液产生等毒力因子。它不易产生耐药性,并且有效地抑制了耐甲氧西林金黄色葡萄球菌(MRSA)和表皮葡萄球菌形成的生物膜,但对革兰氏阴性菌无效。基因表达分析和分子对接补充表明,Fmoc-Iodo-Phe 可以靶向 AgrA 群体感应级联,因为它与 DNA 结合位点的关键残基具有强烈的相互作用。值得注意的是,它在秀丽隐杆线虫模型中无细胞毒性,并根据 ADMET 预测满足药物相似性标准。因此,我们的研究结果将 Fmoc-Iodo-Phe 定位为一种有前途的抗金黄色葡萄球菌感染的抗菌候选物,突出了它作为传统抗生素替代品的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验