Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States.
Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States.
J Phys Chem B. 2024 Nov 14;128(45):11088-11107. doi: 10.1021/acs.jpcb.4c04985. Epub 2024 Nov 1.
This study reports a comprehensive analysis and comparison of several AlphaFold2 adaptations and OmegaFold and AlphaFlow approaches in predicting distinct allosteric states, conformational ensembles, and mutation-induced structural effects for a panel of state-switching allosteric ABL mutants. The results revealed that the proposed AlphaFold2 adaptation with randomized alanine sequence scanning can generate functionally relevant allosteric states and conformational ensembles of the ABL kinase that qualitatively capture a unique pattern of population shifts between the active and inactive states in the allosteric ABL mutants. Consistent with the NMR experiments, the proposed AlphaFold2 adaptation predicted that G269E/M309L/T408Y mutant could induce population changes and sample a significant fraction of the fully inactive I form which is a low-populated, high-energy state for the wild-type ABL protein. We also demonstrated that other ABL mutants G269E/M309L/T334I and M309L/L320I/T334I that introduce a single activating T334I mutation can reverse equilibrium and populate exclusively the active ABL form. While the precise quantitative predictions of the relative populations of the active and various hidden inactive states in the ABL mutants remain challenging, our results provide evidence that AlphaFold2 adaptation with randomized alanine sequence scanning can adequately detect a spectrum of the allosteric ABL states and capture the equilibrium redistributions between structurally distinct functional ABL conformations. We further validated the robustness of the proposed AlphaFold2 adaptation for predicting the unique inactive architecture of the BSK8 kinase and structural differences between ligand-unbound apo and ATP-bound forms of BSK8. The results of this comparative study suggested that AlpahFold2, OmegaFold, and AlphaFlow approaches may be driven by structural memorization of existing protein folds and are strongly biased toward predictions of the thermodynamically stable ground states of the protein kinases, highlighting limitations and challenges of AI-based methodologies in detecting alternative functional conformations, accurate characterization of physically significant conformational ensembles, and prediction of mutation-induced allosteric structural changes.
本研究报告了对几种 AlphaFold2 适应方法和 OmegaFold 和 AlphaFlow 方法的全面分析和比较,这些方法用于预测一组开关型变构 ABL 突变体的不同别构状态、构象集合和突变诱导的结构效应。结果表明,提出的带有随机丙氨酸序列扫描的 AlphaFold2 适应方法可以生成具有功能相关性的 ABL 激酶的别构状态和构象集合,从定性上捕捉到别构 ABL 突变体中活性和非活性状态之间的独特群体转移模式。与 NMR 实验一致,提出的 AlphaFold2 适应方法预测 G269E/M309L/T408Y 突变体可以诱导群体变化,并在很大程度上采样完全非活性 I 构象,这是野生型 ABL 蛋白的低群体、高能状态。我们还证明,其他 ABL 突变体 G269E/M309L/T334I 和 M309L/L320I/T334I 引入单个激活 T334I 突变可以反转平衡并仅占据活性 ABL 形式。虽然 ABL 突变体中活性和各种隐藏非活性状态的相对群体的精确定量预测仍然具有挑战性,但我们的结果提供了证据,表明带有随机丙氨酸序列扫描的 AlphaFold2 适应方法可以充分检测变构 ABL 状态的范围,并捕获结构上不同的功能 ABL 构象之间的平衡再分布。我们进一步验证了提出的 AlphaFold2 适应方法用于预测 BSK8 激酶的独特非活性结构和配体未结合的 apo 和 ATP 结合形式的 BSK8 之间的结构差异的稳健性。这项比较研究的结果表明,AlpahFold2、OmegaFold 和 AlphaFlow 方法可能受到现有蛋白质折叠结构记忆的驱动,并且强烈偏向于预测蛋白质激酶的热力学稳定基态,突出了基于人工智能的方法在检测替代功能构象、准确表征具有物理意义的构象集合和预测突变诱导的别构结构变化方面的局限性和挑战。