Suppr超能文献

使用患者报告结局在风险预测模型开发中支持癌症护理提供:范围综述。

Use of Patient-Reported Outcomes in Risk Prediction Model Development to Support Cancer Care Delivery: A Scoping Review.

机构信息

Dana-Farber Cancer Institute, Boston, MA.

Harvard Medical School, Boston, MA.

出版信息

JCO Clin Cancer Inform. 2024 Nov;8:e2400145. doi: 10.1200/CCI-24-00145. Epub 2024 Nov 1.

Abstract

PURPOSE

The integration of patient-reported outcomes (PROs) into electronic health records (EHRs) has enabled systematic collection of symptom data to manage post-treatment symptoms. The use and integration of PRO data into routine care are associated with overall treatment success, adherence, and satisfaction. Clinical trials have demonstrated the prognostic value of PROs including physical function and global health status in predicting survival. It is unknown to what extent routinely collected PRO data are used in the development of risk prediction models (RPMs) in oncology care. The objective of the scoping review is to assess how PROs are used to train risk RPMs to predict patient outcomes in oncology care.

METHODS

Using the scoping review methodology outlined in the Joanna Briggs Institute Manual for Evidence Synthesis, we searched four databases (MEDLINE, CINAHL, Embase, and Web of Science) to locate peer-reviewed oncology articles that used PROs as predictors to train models. Study characteristics including settings, clinical outcomes, and model training, testing, validation, and performance data were extracted for analyses.

RESULTS

Of the 1,254 studies identified, 18 met inclusion criteria. Most studies performed retrospective analyses of prospectively collected PRO data to build prediction models. Post-treatment survival was the most common outcome predicted. Discriminative performance of models trained using PROs was better than models trained without PROs. Most studies did not report model calibration.

CONCLUSION

Systematic collection of PROs in routine practice provides an opportunity to use patient-reported data to develop RPMs. Model performance improves when PROs are used in combination with other comprehensive data sources.

摘要

目的

将患者报告的结果(PROs)整合到电子健康记录(EHRs)中,使系统地收集症状数据成为可能,从而管理治疗后的症状。PRO 数据的使用和整合与整体治疗成功、依从性和满意度相关。临床试验已经证明了 PROs(包括身体功能和总体健康状况)在预测生存方面的预后价值。目前尚不清楚在肿瘤学护理中,常规收集的 PRO 数据在风险预测模型(RPMs)的开发中被使用到何种程度。本研究的目的是评估 PROs 如何用于训练风险 RPMs,以预测肿瘤学护理中患者的结局。

方法

采用乔安娜·布里格斯研究所证据综合手册中概述的范围综述方法,我们在四个数据库(MEDLINE、CINAHL、Embase 和 Web of Science)中进行了检索,以定位使用 PROs 作为预测因子来训练模型的同行评审肿瘤学文章。提取了研究特征,包括设置、临床结局以及模型的训练、测试、验证和性能数据,用于分析。

结果

在确定的 1254 项研究中,有 18 项符合纳入标准。大多数研究对前瞻性收集的 PRO 数据进行了回顾性分析,以构建预测模型。预测最常见的结果是治疗后生存。使用 PRO 训练的模型的判别性能优于未使用 PRO 训练的模型。大多数研究未报告模型校准。

结论

在常规实践中系统地收集 PRO 为使用患者报告数据开发 RPMs 提供了机会。当 PRO 与其他全面的数据来源结合使用时,模型性能会得到提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验