Suppr超能文献

量化特定来源空气污染暴露以服务于流行病学、风险评估和环境正义的方法。

Methods for Quantifying Source-Specific Air Pollution Exposure to Serve Epidemiology, Risk Assessment, and Environmental Justice.

作者信息

Shan Xiaorong, Casey Joan A, Shearston Jenni A, Henneman Lucas R F

机构信息

Department of Civil, Environmental, and Infrastructure Engineering College of Engineering and Computing George Mason University Fairfax VA USA.

Department of Environmental and Occupational Health Sciences School of Public Health University of Washington Seattle WA USA.

出版信息

Geohealth. 2024 Nov 5;8(11):e2024GH001188. doi: 10.1029/2024GH001188. eCollection 2024 Nov.

Abstract

Identifying sources of air pollution exposure is crucial for addressing their health impacts and associated inequities. Researchers have developed modeling approaches to resolve source-specific exposure for application in exposure assessments, epidemiology, risk assessments, and environmental justice. We explore six source-specific air pollution exposure assessment approaches: Photochemical Grid Models (PGMs), Data-Driven Statistical Models, Dispersion Models, Reduced Complexity chemical transport Models (RCMs), Receptor Models, and Proximity Exposure Estimation Models. These models have been applied to estimate exposure from sources such as on-road vehicles, power plants, industrial sources, and wildfires. We categorize these models based on their approaches for assessing emissions and atmospheric processes (e.g., statistical or first principles), their exposure units (direct physical measures or indirect measures/scaled indices), and their temporal and spatial scales. While most of the studies we discuss are from the United States, the methodologies and models are applicable to other countries and regions. We recommend identifying the key physical processes that determine exposure from a given source and using a model that sufficiently accounts for these processes. For instance, PGMs use first principles parameterizations of atmospheric processes and provide source impacts exposure variability in concentration units, although approaches within PGMs for source attribution introduce uncertainties relative to the base model and are difficult to evaluate. Evaluation is important but difficult-since source-specific exposure is difficult to observe, the most direct evaluation methods involve comparisons with alternative models.

摘要

确定空气污染暴露源对于应对其健康影响及相关不公平现象至关重要。研究人员已开发出建模方法,以解决特定源暴露问题,用于暴露评估、流行病学、风险评估及环境正义领域。我们探讨六种特定源空气污染暴露评估方法:光化学网格模型(PGMs)、数据驱动统计模型、扩散模型、简化复杂性化学传输模型(RCMs)、受体模型和近距离暴露估计模型。这些模型已用于估算道路车辆、发电厂、工业源和野火等源的暴露情况。我们根据这些模型评估排放和大气过程的方法(如统计方法或第一性原理方法)、暴露单位(直接物理测量或间接测量/缩放指数)以及时间和空间尺度对其进行分类。虽然我们讨论的大多数研究来自美国,但这些方法和模型适用于其他国家和地区。我们建议确定决定给定源暴露的关键物理过程,并使用充分考虑这些过程的模型。例如,PGMs使用大气过程中的第一性原理参数化,并以浓度单位提供源影响暴露变异性,尽管PGMs中用于源归因的方法相对于基础模型引入了不确定性且难以评估。评估很重要但很困难——由于特定源暴露难以观测,最直接的评估方法涉及与替代模型进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/722e/11536408/d752f0ba704f/GH2-8-e2024GH001188-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验