Suppr超能文献

使用两步非局部主成分分析方法去噪复值扩散磁共振图像。

Denoising complex-valued diffusion MR images using a two-step non-local principal component analysis approach.

作者信息

Ye Xinyu, Ma Xiaodong, Pan Ziyi, Zhang Zhe, Guo Hua, Uğurbil Kâmil, Wu Xiaoping

机构信息

Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China.

Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States.

出版信息

bioRxiv. 2024 Oct 31:2024.10.30.621081. doi: 10.1101/2024.10.30.621081.

Abstract

PURPOSE

to propose a two-step non-local principal component analysis (PCA) method and demonstrate its utility for denoising diffusion tensor MRI (DTI) with a few diffusion directions.

METHODS

A two-step denoising pipeline was implemented to ensure accurate patch selection even with high noise levels and was coupled with data preprocessing for g-factor normalization and phase stabilization before data denoising with a non-local PCA algorithm. At the heart of our proposed pipeline was the use of a data-driven optimal shrinkage algorithm to manipulate the singular values in a way that would optimally estimate the noise-free signal. Our approach's denoising performances were evaluated using simulation and in-vivo human data experiments. The results were compared to those obtained with existing local-PCA-based methods.

RESULTS

In both simulation and human data experiments, our approach substantially enhanced image quality relative to the noisy counterpart, yielding improved performances for estimation of relevant DTI metrics. It also outperformed existing local-PCA-based methods in reducing noise while preserving anatomic details. It also led to improved whole-brain tractography relative to the noisy counterpart.

CONCLUSION

The proposed denoising method has the utility for improving image quality for DTI with reduced diffusion directions and is believed to benefit many applications especially those aiming to achieve quality parametric mapping using only a few image volumes.

摘要

目的

提出一种两步非局部主成分分析(PCA)方法,并证明其在对具有少量扩散方向的扩散张量磁共振成像(DTI)进行去噪方面的效用。

方法

实施了一个两步去噪流程,以确保即使在高噪声水平下也能准确选择图像块,并在使用非局部PCA算法进行数据去噪之前,结合用于g因子归一化和相位稳定的数据预处理。我们提出的流程的核心是使用一种数据驱动的最优收缩算法来处理奇异值,以最优地估计无噪声信号。使用模拟和体内人体数据实验评估了我们方法的去噪性能。将结果与使用现有的基于局部PCA的方法获得的结果进行比较。

结果

在模拟和人体数据实验中,相对于有噪声的对应图像,我们的方法显著提高了图像质量,在估计相关DTI指标方面表现更优。在减少噪声同时保留解剖细节方面,它也优于现有的基于局部PCA的方法。相对于有噪声的对应图像,它还改善了全脑纤维束成像。

结论

所提出的去噪方法在减少扩散方向的情况下对提高DTI图像质量有用,并且相信会有益于许多应用,特别是那些旨在仅使用少量图像体积来实现高质量参数映射的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ade/11565869/a09f276c9f8b/nihpp-2024.10.30.621081v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验