Suppr超能文献

深度学习对人类群体中多基因适应性的不同模式的见解。

Deep learning insights into distinct patterns of polygenic adaptation across human populations.

作者信息

Tripathi Devashish, Bhattacharyya Chandrika, Basu Analabha

机构信息

Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, 741251, West Bengal, India.

Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, Haryana (Delhi NCR), India.

出版信息

Nucleic Acids Res. 2024 Dec 11;52(22):e102. doi: 10.1093/nar/gkae1027.

Abstract

Response to spatiotemporal variation in selection gradients resulted in signatures of polygenic adaptation in human genomes. We introduce RAISING, a two-stage deep learning framework that optimizes neural network architecture through hyperparameter tuning before performing feature selection and prediction tasks. We tested RAISING on published and newly designed simulations that incorporate the complex interplay between demographic history and selection gradients. RAISING outperformed Phylogenetic Generalized Least Squares (PGLS), ridge regression and DeepGenomeScan, with significantly higher true positive rates (TPR) in detecting genetic adaptation. It reduced computational time by 60-fold and increased TPR by up to 28% compared to DeepGenomeScan on published data. In more complex demographic simulations, RAISING showed lower false discoveries and significantly higher TPR, up to 17-fold, compared to other methods. RAISING demonstrated robustness with least sensitivity to demographic history, selection gradient and their interactions. We developed a sliding window method for genome-wide implementation of RAISING to overcome the computational challenges of high-dimensional genomic data. Applied to African, European, South Asian and East Asian populations, we identified multiple genomic regions undergoing polygenic selection. Notably, ∼70% of the regions identified in Africans are unique, with broad patterns distinguishing them from non-Africans, corroborating the Out of Africa dispersal model.

摘要

对选择梯度时空变化的响应导致了人类基因组中多基因适应性的特征。我们引入了RAISING,这是一个两阶段的深度学习框架,在执行特征选择和预测任务之前,通过超参数调整来优化神经网络架构。我们在已发表的和新设计的模拟中测试了RAISING,这些模拟纳入了人口历史和选择梯度之间的复杂相互作用。RAISING的表现优于系统发育广义最小二乘法(PGLS)、岭回归和DeepGenomeScan,在检测遗传适应性方面具有显著更高的真阳性率(TPR)。与在已发表数据上的DeepGenomeScan相比,它将计算时间减少了60倍,TPR提高了28%。在更复杂的人口模拟中,与其他方法相比,RAISING显示出更低的错误发现率和显著更高的TPR,高达17倍。RAISING表现出稳健性,对人口历史、选择梯度及其相互作用的敏感性最低。我们开发了一种滑动窗口方法,用于在全基因组范围内实施RAISING,以克服高维基因组数据的计算挑战。应用于非洲、欧洲、南亚和东亚人群,我们确定了多个经历多基因选择的基因组区域。值得注意的是,在非洲人身上确定的区域中约70%是独特的,其广泛模式将他们与非非洲人区分开来,证实了“走出非洲”扩散模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e146/11662676/3d1ac11c8f90/gkae1027figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验