Lado Wudu, Ham Ahrom, Li Hongyu, Zhang Hong, Chang Audrey Yuen, Sardi Sergio Pablo, Alcalay Roy N, Arancio Ottavio, Przedborski Serge, Tang Guomei
Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
Brain. 2025 May 13;148(5):1621-1638. doi: 10.1093/brain/awae380.
Cognitive impairment is a common but poorly understood non-motor aspect of Parkinson's disease, negatively affecting the patient's functional capacity and quality of life. The mechanisms underlying cognitive impairment in Parkinson's disease remain elusive, limiting treatment and prevention strategies. This study investigates the molecular and cellular basis of cognitive impairment associated with heterozygous mutations in GBA1, the strongest risk gene for Parkinson's disease, which encodes glucocerebrosidase, a lysosome enzyme that degrades the glycosphingolipid glucosylceramide into glucose and ceramide. Using a Gba1L444P/+ mouse model, we provide evidence that L444P heterozygous Gba1 mutation (L444P/+) causes hippocampus-dependent spatial and reference memory deficits independently of α-synuclein (αSyn) accumulation, glucocerebrosidase lipid substrate accumulation, dopaminergic dysfunction and motor deficits. The mutation disrupts hippocampal synaptic plasticity and basal synaptic transmission by reducing the density of hippocampal CA3-CA1 synapses, a mechanism that is dissociated from αSyn-mediated presynaptic neurotransmitter release. Using a well-characterized Thy1-αSyn pre-manifest Parkinson's disease mouse model overexpressing wild-type human αSyn, we find that the L444P/+ mutation exacerbates hippocampal synaptic αSyn accumulation, synaptic and cognitive impairment in young Gba1L444P/+:Thy1-αSyn double mutant animals. With age, Thy1-αSyn mice manifest motor symptoms, and the double mutant mice exhibit more exacerbated synaptic and motor impairment than the Thy1-αSyn mice. Taken together, our results suggest that heterozygous L444P GBA1 mutation alone perturbs hippocampal synaptic structure and function, imposing a subclinical pathological burden for cognitive impairment. When co-existing αSyn overexpression is present, heterozygous L444P GBA1 mutation interacts with αSyn pathology to accelerate Parkinson's disease-related cognitive impairment and motor symptoms.
认知障碍是帕金森病常见但了解不足的非运动方面,对患者的功能能力和生活质量产生负面影响。帕金森病认知障碍的潜在机制仍然难以捉摸,限制了治疗和预防策略。本研究调查了与GBA1杂合突变相关的认知障碍的分子和细胞基础,GBA1是帕金森病最强的风险基因,编码葡糖脑苷脂酶,一种将糖鞘脂葡萄糖神经酰胺降解为葡萄糖和神经酰胺的溶酶体酶。使用Gba1L444P/+小鼠模型,我们提供证据表明L444P杂合Gba1突变(L444P/+)独立于α-突触核蛋白(αSyn)积累、葡糖脑苷脂酶脂质底物积累、多巴胺能功能障碍和运动缺陷,导致海马依赖性空间和参考记忆缺陷。该突变通过降低海马CA3-CA1突触的密度破坏海马突触可塑性和基础突触传递,这一机制与αSyn介导的突触前神经递质释放无关。使用一个特征明确的过表达野生型人αSyn的Thy1-αSyn帕金森病前期小鼠模型,我们发现L444P/+突变加剧了年轻的Gba1L444P/+:Thy1-αSyn双突变动物的海马突触αSyn积累、突触和认知障碍。随着年龄的增长,Thy1-αSyn小鼠出现运动症状,双突变小鼠比Thy1-αSyn小鼠表现出更严重的突触和运动障碍。综上所述,我们的结果表明,单独的杂合L444P GBA1突变扰乱海马突触结构和功能,为认知障碍带来亚临床病理负担。当同时存在αSyn过表达时,杂合L444P GBA1突变与αSyn病理相互作用,加速帕金森病相关的认知障碍和运动症状。