Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA.
Department of Psychiatry, Olin Neuropsychiatric Research Center, Hartford, CT, USA.
Adv Neurobiol. 2024;40:685-723. doi: 10.1007/978-3-031-69491-2_23.
Categorical diagnosis, a pillar of the medical model, has not worked well in psychiatry where most diagnoses are still exclusively symptom based. Uncertainty continues about whether categories or dimensions work better for the assessment and treatment of idiopathic psychoses. The Bipolar Schizophrenia Network for Intermediate Phenotypes (B-SNIP) examined multiple cognitive and electrophysiological biomarkers across a large transdiagnostic psychosis data set. None of the variables supported neurobiological distinctiveness for conventional clinical psychosis diagnoses but showed a continuum of severity. Using numerical taxonomy of these data, B-SNIP identified three biological subtypes (Biotypes) agnostic to DSM diagnoses. Biotype-1 is characterized by reduced physiological response to salient stimuli, while Biotype-2 showed accentuated intrinsic (background or ongoing) neural activity and the worst inhibition. Biotype-3 cases are like healthy persons on many laboratory measures. These Biotypes differed in imaging and other electrophysiological measures not included in subgroup creation, illustrating external validation. The Biotypes solution also replicated in an independent sample of psychosis cases. Biotypes are differentiable by clinical characteristics, leading to a feasible algorithm for Biotype estimates. Identifying Biotypes may aid treatment selection and outcome prediction. As an example, preliminary cross-sectional B-SNIP data suggest that Biotype-1 cases may have physiological features that predict a more favorable response to clozapine. While psychosis Biotypes reveal physiological heterogeneity across cases with similar clinical characteristics, data also suggest a dimensional vulnerability for serious psychopathology that cuts across diagnostic boundaries. Both categorical and dimensional diagnostic approaches should be considered within idiopathic psychosis for optimum diagnosis, care, and research.
分类诊断是医学模式的一个支柱,但在精神病学中效果不佳,因为大多数诊断仍然完全基于症状。对于评估和治疗特发性精神病,类别还是维度更有效仍然存在不确定性。双相情感障碍和精神分裂症的中间表型网络(B-SNIP)在一个大型跨诊断精神病数据集上检查了多种认知和电生理生物标志物。没有一个变量支持传统临床精神病诊断的神经生物学独特性,但显示出严重程度的连续统。使用这些数据的数值分类法,B-SNIP 确定了三个与 DSM 诊断无关的生物学亚型(生物型)。生物型-1的特征是对显著刺激的生理反应减少,而生物型-2表现出增强的内在(背景或持续)神经活动和最差的抑制。生物型-3病例在许多实验室测量上与健康人相似。这些生物型在成像和其他未包含在亚组创建中的电生理测量方面存在差异,说明了外部验证。在一个独立的精神病病例样本中,生物型解决方案也得到了复制。生物型可以通过临床特征来区分,从而为生物型估计提供了可行的算法。识别生物型可能有助于治疗选择和预后预测。例如,初步的 B-SNIP 横断面数据表明,生物型-1病例可能具有预测氯氮平更有利反应的生理特征。虽然精神病生物型揭示了具有相似临床特征的病例中的生理异质性,但数据还表明,严重精神病理学的维度易感性跨越了诊断边界。在特发性精神病中,应该考虑分类和维度诊断方法,以实现最佳诊断、护理和研究。