Suppr超能文献

活性氧为何重要:单电子氧化剂使DNA损伤与修复聚焦于基因调控的G-四链体上。

Why the ROS matters: One-electron oxidants focus DNA damage and repair on G-quadruplexes for gene regulation.

作者信息

Fleming Aaron M, Burrows Cynthia J

机构信息

Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, United States.

出版信息

DNA Repair (Amst). 2025 Jan;145:103789. doi: 10.1016/j.dnarep.2024.103789. Epub 2024 Nov 16.

Abstract

Hydrogen peroxide is a precursor to reactive oxygen species (ROS) in cells because of its high reactivity with iron(II) carbonate complexes formed in the labile iron pool due to a high concentration of intracellular bicarbonate (25-100 mM). This chemistry leads to the formation of carbonate radical anion rather than hydroxyl radical, and unlike the latter ROS, CO is a milder one-electron oxidant with high specificity for guanine oxidation in DNA and RNA. In addition to metabolism, another major source of DNA oxidation is inflammation which generates peroxynitrite, another precursor to CO via reaction with dissolved CO. The identity of the ROS is important because not all radicals react with DNA in the same way. Whereas hydroxyl radical forms adducts at all four bases and reacts with multiple positions on ribose leading to base loss and strand breaks, carbonate radical anion is focused on guanosine oxidation to yield 8-oxo-7,8-dihydroguanosine in nucleic acids and the nucleotide pool, a modification that can function epigenetically in the context of a G-quadruplex. DNA sequences of multiple adjacent guanines, as found in G-quadruplex-forming sequences of gene promoters, are particularly susceptible to oxidative damage, and the focusing of CO chemistry on these sites can lead to a transcriptional response during base excision repair. In this pathway, AP-endonuclease 1 plays a key role in accelerating G-quadruplex folding as well as recruiting activating transcription factors to impact gene expression.

摘要

由于细胞内高浓度的碳酸氢盐(25 - 100 mM),过氧化氢与不稳定铁池中形成的碳酸亚铁(II)络合物具有高反应活性,因此它是细胞中活性氧(ROS)的前体。这种化学反应导致碳酸根自由基阴离子而非羟基自由基的形成,与后者不同,碳酸根自由基阴离子是一种较温和的单电子氧化剂,对DNA和RNA中的鸟嘌呤氧化具有高特异性。除了代谢,DNA氧化的另一个主要来源是炎症,炎症会产生过氧亚硝酸盐,过氧亚硝酸盐通过与溶解的一氧化碳反应也是碳酸根自由基阴离子的另一个前体。活性氧的特性很重要,因为并非所有自由基都以相同的方式与DNA反应。羟基自由基在所有四个碱基处形成加合物,并与核糖上的多个位置反应,导致碱基丢失和链断裂,而碳酸根自由基阴离子则集中于鸟嘌呤氧化,在核酸和核苷酸池中产生8-氧代-7,8-二氢鸟苷,这种修饰在G-四链体的背景下可发挥表观遗传功能。基因启动子的G-四链体形成序列中发现的多个相邻鸟嘌呤的DNA序列特别容易受到氧化损伤,碳酸根自由基阴离子化学作用集中于这些位点可导致碱基切除修复过程中的转录反应。在这条途径中,AP核酸内切酶1在加速G-四链体折叠以及招募激活转录因子以影响基因表达方面起关键作用。

相似文献

1
Why the ROS matters: One-electron oxidants focus DNA damage and repair on G-quadruplexes for gene regulation.
DNA Repair (Amst). 2025 Jan;145:103789. doi: 10.1016/j.dnarep.2024.103789. Epub 2024 Nov 16.
3
Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2604-2609. doi: 10.1073/pnas.1619809114. Epub 2017 Jan 31.
4
Chemistry of ROS-mediated oxidation to the guanine base in DNA and its biological consequences.
Int J Radiat Biol. 2022;98(3):452-460. doi: 10.1080/09553002.2021.2003464. Epub 2021 Nov 21.
5
CO protects cells from iron-Fenton oxidative DNA damage in and humans.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2419175121. doi: 10.1073/pnas.2419175121. Epub 2024 Nov 27.
6
Interplay of Guanine Oxidation and G-Quadruplex Folding in Gene Promoters.
J Am Chem Soc. 2020 Jan 22;142(3):1115-1136. doi: 10.1021/jacs.9b11050. Epub 2020 Jan 9.
7
Promoter G-quadruplex sequences are targets for base oxidation and strand cleavage during hypoxia-induced transcription.
Free Radic Biol Med. 2012 Jul 1;53(1):51-9. doi: 10.1016/j.freeradbiomed.2012.04.024. Epub 2012 May 1.
8
DNA lesions derived from the site selective oxidation of Guanine by carbonate radical anions.
Chem Res Toxicol. 2003 Dec;16(12):1528-38. doi: 10.1021/tx034142t.
10
Efficacy and site specificity of hydrogen abstraction from DNA 2-deoxyribose by carbonate radicals.
Free Radic Res. 2015;49(12):1431-7. doi: 10.3109/10715762.2015.1081187. Epub 2015 Sep 11.

引用本文的文献

1
Chromatin Immunoprecipitation Reveals p53 Binding to G-Quadruplex DNA Sequences in Myeloid Leukemia Cell Lines.
ACS Bio Med Chem Au. 2025 Feb 12;5(2):283-298. doi: 10.1021/acsbiomedchemau.4c00124. eCollection 2025 Apr 16.

本文引用的文献

1
CO protects cells from iron-Fenton oxidative DNA damage in and humans.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2419175121. doi: 10.1073/pnas.2419175121. Epub 2024 Nov 27.
2
Common occurrence of hotspots of single strand DNA breaks at transcriptional start sites.
BMC Genomics. 2024 Apr 15;25(1):368. doi: 10.1186/s12864-024-10284-4.
3
DNA Damage Accelerates G-Quadruplex Folding in a Duplex-G-Quadruplex-Duplex Context.
J Am Chem Soc. 2024 Apr 11;146(16):11364-70. doi: 10.1021/jacs.4c00960.
4
G-quadruplex DNA structure is a positive regulator of transcription.
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2320240121. doi: 10.1073/pnas.2320240121. Epub 2024 Feb 5.
5
Re-examining Fenton and Fenton-like reactions.
Nat Rev Chem. 2021 Sep;5(9):595-597. doi: 10.1038/s41570-021-00310-4.
6
Promoters telomeres: AP-endonuclease 1 interactions with abasic sites in G-quadruplex folds depend on topology.
RSC Chem Biol. 2023 Jan 18;4(4):261-270. doi: 10.1039/d2cb00233g. eCollection 2023 Apr 5.
7
Structure of a 28.5 kDa duplex-embedded G-quadruplex system resolved to 7.4 Å resolution with cryo-EM.
Nucleic Acids Res. 2023 Feb 28;51(4):1943-1959. doi: 10.1093/nar/gkad014.
8
8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification.
Exp Mol Med. 2022 Oct;54(10):1626-1642. doi: 10.1038/s12276-022-00822-z. Epub 2022 Oct 21.
9
DNA G-Quadruplex in Human Telomeres and Oncogene Promoters: Structures, Functions, and Small Molecule Targeting.
Acc Chem Res. 2022 Sep 20;55(18):2628-2646. doi: 10.1021/acs.accounts.2c00337. Epub 2022 Sep 2.
10
Hotspots of single-strand DNA "breakome" are enriched at transcriptional start sites of genes.
Front Mol Biosci. 2022 Aug 15;9:895795. doi: 10.3389/fmolb.2022.895795. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验