Suppr超能文献

衰老相关长链非编码RNA:卵巢癌预后的先驱指标

Senescence-Related LncRNAs: Pioneering Indicators for Ovarian Cancer Outcomes.

作者信息

Fan Shao-Bei, Xie Xiao-Feng, Wei Wang, Hua Tian

机构信息

Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei 054001 People's Republic of China.

Department of Obstetrics and Gynaecology, Hebei Medical University, Second Hospital, 215 Heping Road, Shijiazhuang, Hebei 050000 People's Republic of China.

出版信息

Phenomics. 2024 Sep 26;4(4):379-393. doi: 10.1007/s43657-024-00163-z. eCollection 2024 Aug.

Abstract

UNLABELLED

In gynecological oncology, ovarian cancer (OC) remains the most lethal, highlighting its significance in public health. Our research focused on the role of long non-coding RNA (lncRNA) in OC, particularly senescence-related lncRNAs (SnRlncRNAs), crucial for OC prognosis. Utilizing data from the genotype-tissue expression (GTEx) and cancer genome Atlas (TCGA), SnRlncRNAs were discerned and subsequently, a risk signature was sculpted using co-expression and differential expression analyses, Cox regression, and least absolute shrinkage and selection operator (LASSO). This signature's robustness was validated through time-dependent receiver operating characteristics (ROC), and multivariate Cox regression, with further validation in the international cancer genome consortium (ICGC). Gene set enrichment analyses (GSEA) unveiled pathways intertwined with risk groups. The ROC, alongside the nomogram and calibration outcomes, attested to the model's robust predictive accuracy. Of particular significance, our model has demonstrated superiority over several commonly utilized clinical indicators, such as stage and grade. Patients in the low-risk group demonstrated greater immune infiltration and varied drug sensitivities compared to other groups. Moreover, consensus clustering classified OC patients into four distinct groups based on the expression of 17 SnRlncRNAs, showing diverse survival rates. In conclusion, these findings underscored the robustness and reliability of our model and highlighted its potential for facilitating improved decision-making in the context of risk assessment, and demonstrated that these markers potentially served as robust, efficacious biomarkers and prognostic tools, offering insights into predicting OC response to anticancer therapeutics.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s43657-024-00163-z.

摘要

未标注

在妇科肿瘤学中,卵巢癌(OC)仍然是最致命的,凸显了其在公共卫生中的重要性。我们的研究聚焦于长链非编码RNA(lncRNA)在OC中的作用,特别是衰老相关lncRNA(SnRlncRNAs),其对OC预后至关重要。利用基因型-组织表达(GTEx)和癌症基因组图谱(TCGA)的数据,识别出SnRlncRNAs,随后通过共表达和差异表达分析、Cox回归以及最小绝对收缩和选择算子(LASSO)构建了一个风险特征。通过时间依赖的受试者工作特征(ROC)和多变量Cox回归验证了该特征的稳健性,并在国际癌症基因组联盟(ICGC)中进一步验证。基因集富集分析(GSEA)揭示了与风险组相关的通路。ROC以及列线图和校准结果证明了该模型具有强大的预测准确性。特别值得注意的是,我们的模型已证明优于几个常用的临床指标,如分期和分级。与其他组相比,低风险组患者表现出更强的免疫浸润和不同的药物敏感性。此外,共识聚类根据17种SnRlncRNAs的表达将OC患者分为四个不同的组,显示出不同的生存率。总之,这些发现强调了我们模型的稳健性和可靠性,并突出了其在风险评估背景下促进改善决策的潜力,证明这些标志物有可能作为强大、有效的生物标志物和预后工具,为预测OC对抗癌治疗的反应提供见解。

补充信息

在线版本包含可在10.1007/s43657-024-00163-z获取的补充材料。

相似文献

1
Senescence-Related LncRNAs: Pioneering Indicators for Ovarian Cancer Outcomes.
Phenomics. 2024 Sep 26;4(4):379-393. doi: 10.1007/s43657-024-00163-z. eCollection 2024 Aug.
2
Identification and validation of a ferroptosis-related long non-coding RNA signature as a prognostic biomarker for hepatocellular carcinoma.
J Gastrointest Oncol. 2025 Jun 30;16(3):1092-1104. doi: 10.21037/jgo-2025-360. Epub 2025 Jun 24.
4
A novel copper-induced cell death-related lncRNA prognostic signature associated with immune infiltration and clinical value in gastric cancer.
J Cancer Res Clin Oncol. 2023 Sep;149(12):10543-10559. doi: 10.1007/s00432-023-04916-7. Epub 2023 Jun 8.
5
Construction and validation of a lipid metabolism-related genes prognostic signature for skin cutaneous melanoma.
Biochem Biophys Res Commun. 2025 May 29;775:152115. doi: 10.1016/j.bbrc.2025.152115.
6
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
9
Development and Validation of Anoiki-Related Lncrna Signature Prediction Model for KIRC Prognosis.
Comb Chem High Throughput Screen. 2025;28(9):1524-1542. doi: 10.2174/0113862073271880231114100544.
10
[Ferroptosis-related long non-coding RNA to predict the clinical outcome of non-small cell lung cancer after radiotherapy].
Beijing Da Xue Xue Bao Yi Xue Ban. 2025 Jun 18;57(3):569-577. doi: 10.19723/j.issn.1671-167X.2025.03.022.

引用本文的文献

本文引用的文献

1
Analysis of the Immune Response by Standardized Whole-Blood Stimulation with Metabolism Modulation.
Phenomics. 2023 Sep 12;4(1):81-89. doi: 10.1007/s43657-023-00114-0. eCollection 2024 Feb.
2
Emerging Regulatory Mechanisms of N-Methyladenosine Modification in Cancer Metastasis.
Phenomics. 2022 May 25;3(1):83-100. doi: 10.1007/s43657-021-00043-w. eCollection 2023 Feb.
3
Hallmarks of aging: An expanding universe.
Cell. 2023 Jan 19;186(2):243-278. doi: 10.1016/j.cell.2022.11.001. Epub 2023 Jan 3.
4
Deciphering the map of METTL14-mediated lncRNA m6A modification at the transcriptome-wide level in breast cancer.
J Clin Lab Anal. 2022 Dec;36(12):e24754. doi: 10.1002/jcla.24754. Epub 2022 Nov 6.
5
Epigenetic regulation of aging: implications for interventions of aging and diseases.
Signal Transduct Target Ther. 2022 Nov 7;7(1):374. doi: 10.1038/s41392-022-01211-8.
7
Silencing of lncRNA KLF3-AS1 represses cell growth in osteosarcoma via miR-338-3p/MEF2C axis.
J Clin Lab Anal. 2022 Nov;36(11):e24698. doi: 10.1002/jcla.24698. Epub 2022 Oct 17.
9
Construction of a prognostic signature for serous ovarian cancer based on lactate metabolism-related genes.
Front Oncol. 2022 Sep 15;12:967342. doi: 10.3389/fonc.2022.967342. eCollection 2022.
10
Effects of Autophagy-Related Genes on the Prognosis and Immune Microenvironment of Ovarian Cancer.
Biomed Res Int. 2022 Jul 30;2022:6609195. doi: 10.1155/2022/6609195. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验