Suppr超能文献

基于核仁大小的死亡率计时器会引发核仁完整性丧失和灾难性的基因组不稳定。

A mortality timer based on nucleolar size triggers nucleolar integrity loss and catastrophic genomic instability.

作者信息

Gutierrez J Ignacio, Tyler Jessica K

机构信息

Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY, USA.

出版信息

Nat Aging. 2024 Dec;4(12):1782-1793. doi: 10.1038/s43587-024-00754-5. Epub 2024 Nov 25.

Abstract

Genome instability is a hallmark of aging, with the highly repetitive ribosomal DNA (rDNA) within the nucleolus being particularly prone to genome instability. Nucleolar enlargement accompanies aging in organisms ranging from yeast to mammals, and treatment with many antiaging interventions results in small nucleoli. Here, we report that an engineered system to reduce nucleolar size robustly extends budding yeast replicative lifespan in a manner independent of protein synthesis rate or rDNA silencing. Instead, when nucleoli expand beyond a size threshold, their biophysical properties change, allowing entry of proteins normally excluded from the nucleolus, including the homologous recombinational repair protein Rad52. This triggers rDNA instability due to aberrant recombination, catastrophic genome instability and imminent death. These results establish that nucleolar expansion is sufficient to drive aging. Moreover, nucleolar expansion beyond a specific size threshold is a mortality timer, as the accompanying disruption of the nucleolar condensate boundary results in catastrophic genome instability that ends replicative lifespan.

摘要

基因组不稳定是衰老的一个标志,核仁内高度重复的核糖体DNA(rDNA)尤其容易发生基因组不稳定。从酵母到哺乳动物,生物体衰老过程中都会伴随核仁增大,而许多抗衰老干预措施会使核仁变小。在此,我们报告一种用于减小核仁大小的工程系统,它能以一种独立于蛋白质合成速率或rDNA沉默的方式显著延长出芽酵母的复制寿命。相反,当核仁扩展超过一个大小阈值时,它们的生物物理特性会发生变化,使得通常被排除在核仁之外的蛋白质进入,包括同源重组修复蛋白Rad52。这会由于异常重组引发rDNA不稳定、灾难性的基因组不稳定并导致细胞即将死亡。这些结果表明核仁扩展足以驱动衰老。此外,核仁扩展超过特定大小阈值是一个死亡计时器,因为随之而来的核仁凝聚物边界的破坏会导致灾难性的基因组不稳定,从而结束复制寿命。

相似文献

1
A mortality timer based on nucleolar size triggers nucleolar integrity loss and catastrophic genomic instability.
Nat Aging. 2024 Dec;4(12):1782-1793. doi: 10.1038/s43587-024-00754-5. Epub 2024 Nov 25.
2
Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae.
Biogerontology. 2014 Jun;15(3):289-316. doi: 10.1007/s10522-014-9499-y. Epub 2014 Apr 8.
3
The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus.
Nat Cell Biol. 2007 Aug;9(8):923-31. doi: 10.1038/ncb1619. Epub 2007 Jul 22.
4
Ribosomal DNA and the nucleolus at the heart of aging.
Trends Biochem Sci. 2022 Apr;47(4):328-341. doi: 10.1016/j.tibs.2021.12.007. Epub 2022 Jan 18.
5
Opposing role of condensin and radiation-sensitive gene RAD52 in ribosomal DNA stability regulation.
J Biol Chem. 2009 Aug 14;284(33):21908-21919. doi: 10.1074/jbc.M109.031302. Epub 2009 Jun 11.
6
Role for perinuclear chromosome tethering in maintenance of genome stability.
Nature. 2008 Dec 4;456(7222):667-70. doi: 10.1038/nature07460. Epub 2008 Nov 9.
9
Regulation of rDNA stability by sumoylation.
DNA Repair (Amst). 2009 Apr 5;8(4):507-16. doi: 10.1016/j.dnarep.2009.01.015. Epub 2009 Mar 3.
10
The Shu complex regulates Rad52 localization during rDNA repair.
DNA Repair (Amst). 2013 Sep;12(9):786-90. doi: 10.1016/j.dnarep.2013.05.003. Epub 2013 Jun 19.

引用本文的文献

1
Nuclear and genome dynamics underlying DNA double-strand break repair.
Nat Rev Mol Cell Biol. 2025 Mar 17. doi: 10.1038/s41580-025-00828-1.

本文引用的文献

1
Sis2 regulates yeast replicative lifespan in a dose-dependent manner.
Nat Commun. 2023 Nov 27;14(1):7719. doi: 10.1038/s41467-023-43233-y.
2
Viscoelasticity and advective flow of RNA underlies nucleolar form and function.
Mol Cell. 2023 Sep 7;83(17):3095-3107.e9. doi: 10.1016/j.molcel.2023.08.006.
3
The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair.
DNA Repair (Amst). 2021 Sep;105:103170. doi: 10.1016/j.dnarep.2021.103170. Epub 2021 Jun 30.
4
Smc5/6 in the rDNA modulates lifespan independently of Fob1​.
Aging Cell. 2021 Jun;20(6):e13373. doi: 10.1111/acel.13373. Epub 2021 May 12.
6
Nucleolar size regulates nuclear envelope shape in .
J Cell Sci. 2020 Oct 30;133(20):jcs242172. doi: 10.1242/jcs.242172.
7
The nucleolus as a multiphase liquid condensate.
Nat Rev Mol Cell Biol. 2021 Mar;22(3):165-182. doi: 10.1038/s41580-020-0272-6. Epub 2020 Sep 1.
8
Detection of DNA Double-Strand Breaks by γ-H2AX Immunodetection.
Methods Mol Biol. 2021;2153:1-8. doi: 10.1007/978-1-0716-0644-5_1.
9
Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging.
Biomolecules. 2020 Jun 9;10(6):882. doi: 10.3390/biom10060882.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验