Suppr超能文献

在 中进行系统的体外进化揭示了耐药性的关键决定因素。

Systematic in vitro evolution in reveals key determinants of drug resistance.

机构信息

Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.

Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA.

出版信息

Science. 2024 Nov 29;386(6725):eadk9893. doi: 10.1126/science.adk9893.

Abstract

Surveillance of drug resistance and the discovery of novel targets-key objectives in the fight against malaria-rely on identifying resistance-conferring mutations in parasites. Current approaches, while successful, require laborious experimentation or large sample sizes. To elucidate shared determinants of antimalarial resistance that can empower in silico inference, we examined the genomes of 724 clones, each selected in vitro for resistance to one of 118 compounds. We identified 1448 variants in 128 recurrently mutated genes, including drivers of antimalarial multidrug resistance. In contrast to naturally occurring variants, those selected in vitro are more likely to be missense or frameshift, involve bulky substitutions, and occur in conserved, ordered protein domains. Collectively, our dataset reveals mutation features that predict drug resistance in eukaryotic pathogens.

摘要

耐药性监测和新型靶标的发现——抗疟斗争的关键目标——依赖于识别寄生虫中的耐药性突变。目前的方法虽然成功,但需要艰苦的实验或大量的样本量。为了阐明抗疟耐药性的共同决定因素,从而能够进行计算机推理,我们研究了 724 个克隆的基因组,每个克隆都是在体外选择对 118 种化合物中的一种产生耐药性的。我们在 128 个经常发生突变的基因中发现了 1448 个变体,包括抗疟多药耐药性的驱动因素。与自然发生的变体相比,那些在体外选择的变体更有可能是错义或移码,涉及大块替换,并且发生在保守的、有序的蛋白质结构域中。总的来说,我们的数据集揭示了可预测真核病原体药物耐药性的突变特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验