Choi Joon Yul, Han Eoksoo, Yoo Tae Keun
Department of Biomedical Engineering, Yonsei University, Wonju, South Korea.
Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea.
EPMA J. 2024 Aug 28;15(4):659-676. doi: 10.1007/s13167-024-00378-0. eCollection 2024 Dec.
Oculomics is an emerging medical field that focuses on the study of the eye to detect and understand systemic diseases. ChatGPT-4 is a highly advanced AI model with multimodal capabilities, allowing it to process text and statistical data. Osteoporosis is a chronic condition presenting asymptomatically but leading to fractures if untreated. Current diagnostic methods like dual X-ray absorptiometry (DXA) are costly and involve radiation exposure. This study aims to develop a cost-effective osteoporosis risk prediction tool using ophthalmological data and ChatGPT-4 based on oculomics, aligning with predictive, preventive, and personalized medicine (3PM) principles.
We hypothesize that leveraging ophthalmological data (oculomics) combined with AI-driven regression models developed by ChatGPT-4 can significantly improve the predictive accuracy for osteoporosis risk. This integration will facilitate earlier detection, enable more effective preventive strategies, and support personalized treatment plans tailored to individual patients. We utilized DXA and ophthalmological data from the Korea National Health and Nutrition Examination Survey to develop and validate osteopenia and osteoporosis prediction models. Ophthalmological and demographic data were integrated into logistic regression analyses, facilitated by ChatGPT-4, to create prediction formulas. These models were then converted into calculator software through automated coding by ChatGPT-4.
ChatGPT-4 automatically developed prediction models based on key predictors of osteoporosis and osteopenia included age, gender, weight, and specific ophthalmological conditions such as cataracts and early age-related macular degeneration, and successfully implemented a risk calculator tool. The oculomics-based models outperformed traditional methods, with area under the curve of the receiver operating characteristic values of 0.785 for osteopenia and 0.866 for osteoporosis in the validation set. The calculator demonstrated high sensitivity and specificity, providing a reliable tool for early osteoporosis screening.
CONCLUSIONS AND EXPERT RECOMMENDATIONS IN THE FRAMEWORK OF 3PM: This study illustrates the value of integrating ophthalmological data into multi-level diagnostics for osteoporosis, significantly improving the accuracy of health risk assessment and the identification of at-risk individuals. Aligned with the principles of 3PM, this approach fosters earlier detection and enables the development of individualized patient profiles, facilitating personalized and targeted treatment strategies. This study also highlights the potential of AI, specifically ChatGPT-4, in developing accessible, cost-effective, and radiation-free screening tools for advancing 3PM in clinical practice. Our findings emphasize the importance of a holistic approach, incorporating comprehensive health indices and interdisciplinary collaboration, to deliver personalized management plans. Preventive strategies should focus on lifestyle modifications and targeted interventions to enhance bone health, thereby preventing the progression of osteoporosis and contributing to overall patient well-being.
The online version contains supplementary material available at 10.1007/s13167-024-00378-0.
眼科学是一个新兴的医学领域,专注于通过对眼睛的研究来检测和了解全身性疾病。ChatGPT-4是一种具有多模态能力的高度先进的人工智能模型,能够处理文本和统计数据。骨质疏松症是一种慢性疾病,通常无症状,但如果不治疗会导致骨折。当前的诊断方法,如双能X线吸收法(DXA),成本高昂且涉及辐射暴露。本研究旨在基于眼科学,利用眼科数据和ChatGPT-4开发一种具有成本效益的骨质疏松症风险预测工具,符合预测、预防和个性化医学(3PM)原则。
我们假设,利用眼科数据(眼科学)结合ChatGPT-4开发的人工智能驱动的回归模型,可以显著提高骨质疏松症风险的预测准确性。这种整合将有助于早期检测,制定更有效的预防策略,并支持针对个体患者的个性化治疗方案。我们利用韩国国家健康与营养检查调查中的DXA和眼科数据,开发并验证骨质减少和骨质疏松症预测模型。在ChatGPT-4的协助下,将眼科和人口统计学数据整合到逻辑回归分析中,以创建预测公式。然后,ChatGPT-4通过自动编码将这些模型转换为计算器软件。
ChatGPT-4根据骨质疏松症和骨质减少的关键预测因素自动开发了预测模型,这些因素包括年龄、性别、体重以及特定的眼科疾病,如白内障和早期年龄相关性黄斑变性,并成功实现了风险计算器工具。基于眼科学的模型优于传统方法,在验证集中,骨质减少的受试者操作特征曲线下面积为0.785,骨质疏松症为0.866。该计算器显示出高敏感性和特异性,为骨质疏松症的早期筛查提供了可靠工具。
3PM框架下的结论与专家建议:本研究说明了将眼科数据整合到骨质疏松症的多层次诊断中的价值,显著提高了健康风险评估的准确性和高危个体的识别能力。符合3PM原则,这种方法有助于早期检测,并能够制定个性化的患者档案,促进个性化和针对性的治疗策略。本研究还强调了人工智能,特别是ChatGPT-4,在开发可及、具有成本效益且无辐射的筛查工具以推进临床实践中的3PM方面的潜力。我们的研究结果强调了采用整体方法的重要性,包括综合健康指标和跨学科合作,以提供个性化管理计划。预防策略应侧重于生活方式的改变和针对性干预,以增强骨骼健康,从而预防骨质疏松症的进展并促进患者的整体健康。
在线版本包含可在10.1007/s13167-024-00378-0获取的补充材料。