Chen Weifeng, Feng Hao, Mo Yinyin, Pan Zhihui, Ji Shichen, Liang Hong, Shen Xing-Can, Jiang Bang-Ping
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
Carbohydr Polym. 2025 Feb 1;349(Pt A):122945. doi: 10.1016/j.carbpol.2024.122945. Epub 2024 Nov 6.
Insufficient drug delivery efficiency in vivo and robust drug resistance are two major factors to induce suboptimal efficacy in chemotherapy of osteosarcoma (OS). To address these challenges, we developed polysaccharide hyaluronic acid (HA)-functionalized ruthenium nanoaggregates (Ru NAs) to enhance the chemotherapy of doxorubicin (DOX) for OS. These NAs, comprising Ru nanoparticles (NPs) and alendronate-modified HA (HA-ALN), effectively load DOX, resulting in DOX@Ru-HA-ALN NAs. The combination of HA and ALN in NAs ensures outstanding cascade targeting towards tumor-invaded bone tissues and CD44-overexpressing tumor cells, maximizing therapeutic efficacy while minimizing off-target effects. Concurrently, the Ru NPs in NAs function as "smart" photoenzymatic agent to not only in situ relieve hypoxia of OS via the catalysis of overexpressed HO to produce O, but also generate mild photothermal effect under 808-nm laser irradiation. They can bidirectionally overcome drug resistance of DOX via downregulation of resistance-related factors including multi-drug resistant associate protein, P-glycoprotein, heat shock factor 1, etc. The integration of cascade targeting with bidirectional modulation of drug resistance positions Ru-HA-ALN NAs to substantially enhance DOX chemotherapy for OS. Therefore, the present work highlights the potential of polysaccharide-functionalized nanomaterials in advancing tumor chemotherapy by addressing challenges of both delivery efficiency and drug resistance.
体内药物递送效率不足和强大的耐药性是骨肉瘤(OS)化疗疗效欠佳的两个主要因素。为应对这些挑战,我们开发了多糖透明质酸(HA)功能化的钌纳米聚集体(Ru NAs),以增强阿霉素(DOX)对骨肉瘤的化疗效果。这些纳米聚集体由钌纳米颗粒(NPs)和阿仑膦酸盐修饰的HA(HA-ALN)组成,能有效负载DOX,形成DOX@Ru-HA-ALN纳米聚集体。纳米聚集体中HA和ALN的组合确保了对肿瘤侵袭的骨组织和过表达CD44的肿瘤细胞具有出色的级联靶向性,在将脱靶效应降至最低的同时最大化治疗效果。同时,纳米聚集体中的Ru NPs作为“智能”光酶剂,不仅通过催化过表达的HO产生O来原位缓解骨肉瘤的缺氧状态,还能在808 nm激光照射下产生温和的光热效应。它们可以通过下调包括多药耐药相关蛋白、P-糖蛋白、热休克因子1等耐药相关因子来双向克服DOX的耐药性。级联靶向与耐药性的双向调节相结合,使Ru-HA-ALN纳米聚集体能显著增强对骨肉瘤的DOX化疗效果。因此,本研究通过解决递送效率和耐药性这两个挑战,突出了多糖功能化纳米材料在推进肿瘤化疗方面的潜力。