Yadav Sudha, Lyons Robert S, Readi-Brown Zoe, Siegler Maxime A, Goldberg David P
Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States.
Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States.
J Inorg Biochem. 2025 Mar;264:112776. doi: 10.1016/j.jinorgbio.2024.112776. Epub 2024 Nov 17.
The synthesis and characterization of a new ligand, 1-(bis(pyridin-2-ylmethyl) amino)-2-methylpropane-2-thiolate (BPAS) and its nonheme iron complex, Fe(BPAS)Br (1), is reported. Reaction of 1 with O at -20 °C generates a high-spin iron(III)-hydroxide complex, [Fe(OH)(BPAS)(Br)] (2), that was characterized by UV-vis, Fe Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies, and electrospray ionization mass spectrometry (ESI-MS). Density functional theory (DFT) calculations were employed to support the spectroscopic assignments. In a previous report (J. Am. Chem. Soc.2024, 146, 7915-7921), the related iron(II) complex, Fe(BNPAS)Br (BNPAS = (bis((6-(neopentylamino)pyridinyl) methyl)amino)-2-methylpropane-2-thiolate) was reported and shown to react with O at low temperature to give a rare iron(III)-superoxide intermediate, which then converts to an S‑oxygenated sulfinate as seen for the nonheme iron thiol dioxygenases. This complex includes two hydrogen bonding neopentylamino groups in the second coordination sphere. Complex 1 does not include these H-bonding groups, and its reactivity with O does not yield a stabilized Fe/O intermediate or S‑oxygenated products, although the data suggest an inner-sphere mechanism and formation of an iron‑oxygen species that is capable of abstracting hydrogen atoms from solvent or weak CH bond substrates. This study indicates that the H-bond donors are critical for stabilizing the Fe(O) intermediate with the BNPAS ligand, which in turn leads to S‑oxygenation, as opposed to H-atom abstraction, following O activation by the nonheme iron center
报道了一种新配体1-(双(吡啶-2-基甲基)氨基)-2-甲基丙烷-2-硫醇盐(BPAS)及其非血红素铁配合物Fe(BPAS)Br(1)的合成与表征。1与O在-20°C下反应生成高自旋氢氧化铁(III)配合物Fe(OH)(BPAS)(Br),通过紫外可见光谱、铁穆斯堡尔光谱、电子顺磁共振(EPR)光谱和电喷雾电离质谱(ESI-MS)对其进行了表征。采用密度泛函理论(DFT)计算来支持光谱归属。在之前的一篇报道(《美国化学会志》2024年,146卷,7915 - 7921页)中,报道了相关的铁(II)配合物Fe(BNPAS)Br(BNPAS =(双((6-(新戊基氨基)吡啶基)甲基)氨基)-2-甲基丙烷-2-硫醇盐),并表明其在低温下与O反应生成一种罕见的铁(III)-超氧化物中间体,然后如非血红素铁硫醇双加氧酶那样转化为S-氧化亚磺酸盐。该配合物在第二配位层包含两个氢键新戊基氨基基团。配合物1不包含这些氢键基团,其与O的反应不会产生稳定的Fe/O中间体或S-氧化产物,尽管数据表明存在内球机制并形成了一种能够从溶剂或弱C-H键底物中提取氢原子的铁-氧物种。这项研究表明,氢键供体对于用BNPAS配体稳定Fe(O)中间体至关重要,这反过来又导致在非血红素铁中心激活O后发生S-氧化,而不是氢原子提取。