Di Iacovo Angela, D'Agostino Chiara, Bhatt Manan, Romanazzi Tiziana, Giovannardi Stefano, Cinquetti Raffaella, Roseti Cristina, Bossi Elena
Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy.
Centre for Neuroscience, University of Insubria, Varese, Italy.
J Neurochem. 2025 Jan;169(1):e16265. doi: 10.1111/jnc.16265.
Neurotransmitter transporters (NTTs) control synaptic responses by modulating the concentration of neurotransmitters at the synaptic cleft. Glutamate is the most abundant excitatory neurotransmitter in the brain and needs to be finely tuned in time and space to maintain a healthy brain and precise neurotransmission. The glutamate transporter EAAT2 (SLC1A2) is primarily responsible for glutamate clearance. EAAT2 impairment has been associated with Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) contribute to both monogenic and sporadic forms of PD, of which the common substitution Gly2019Ser is associated with a significant deficit in EAAT2 expression. The role of pathological mutants of the LRRK2 is intensively studied and reviewed. Here we have focused the attention on the physiological role of LRRK2 on EAAT2, comparing the activity of NTTs with or without the LRRK2 kinase. By heterologous expression in Xenopus laevis oocytes and two-electrode voltage clamp, the current amplitudes of the selected NTTs and kinetic parameters have been collected in the presence and absence of LRRK2. The results show that EAAT2 expression and function are impaired in the absence of the kinase and also under its pharmacological inhibition via MLi-2 treatment. LRRK2 stabilizes EAAT2 expression increasing the amount of transporter at the plasma membrane. Interestingly, the LRRK2 action is EAAT2-specific, as we observed no significant changes in the transport current amplitude and kinetic parameters obtained for the other excitatory and inhibitory NTTs studied. This study, for the first time, demonstrates the physiological importance of LRRK2 in EAAT2 function, highlighting the specificity of LRRK2-mediated modulation of EAAT2 and suggesting a potential role for the kinase as a checkpoint for preserving neurons from excitotoxicity. In brain conditions associated with impaired glutamate clearance, targeting LRRK2 for EAAT2 regulation may offer novel therapeutic opportunities.
神经递质转运体(NTTs)通过调节突触间隙中神经递质的浓度来控制突触反应。谷氨酸是大脑中最丰富的兴奋性神经递质,需要在时间和空间上进行精细调节,以维持大脑健康和精确的神经传递。谷氨酸转运体EAAT2(SLC1A2)主要负责谷氨酸的清除。EAAT2功能受损与阿尔茨海默病(AD)、亨廷顿病(HD)、肌萎缩侧索硬化症(ALS)和帕金森病(PD)有关。富含亮氨酸重复激酶2(LRRK2)的突变导致单基因和散发性PD,其中常见的Gly2019Ser替代与EAAT2表达的显著缺陷有关。LRRK2病理突变体的作用已得到深入研究和综述。在这里,我们将注意力集中在LRRK2对EAAT2的生理作用上,比较有或没有LRRK2激酶时NTTs的活性。通过在非洲爪蟾卵母细胞中的异源表达和双电极电压钳,在有和没有LRRK2的情况下收集了所选NTTs的电流幅度和动力学参数。结果表明,在没有激酶的情况下以及通过MLi-2处理进行药理抑制时,EAAT2的表达和功能均受损。LRRK2通过增加质膜上转运体的数量来稳定EAAT2的表达。有趣的是,LRRK2的作用是EAAT2特异性的,因为我们观察到所研究的其他兴奋性和抑制性NTTs的转运电流幅度和动力学参数没有显著变化。这项研究首次证明了LRRK2在EAAT2功能中的生理重要性,突出了LRRK2介导的对EAAT2调节的特异性,并暗示该激酶作为保护神经元免受兴奋性毒性的检查点的潜在作用。在与谷氨酸清除受损相关的脑部疾病中,针对LRRK2进行EAAT2调节可能提供新的治疗机会。