Bernstein Ashley D, Asante Ampadu Gertrude A, Yang Yanxing, Acharya Gobin Raj, Osborn Popp Thomas M, Nieuwkoop Andrew J
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.
Biochemistry. 2025 Jan 7;64(1):127-137. doi: 10.1021/acs.biochem.4c00513. Epub 2024 Dec 10.
Phosphatidylinositol phosphates (PIPs) are a family of seven different eukaryotic membrane lipids that have a large role in cell viability, despite their minor concentration in eukaryotic cellular membranes. PIPs tightly regulate cellular processes, such as cellular growth, metabolism, immunity, and development through direct interactions with partner proteins. Understanding the biophysical properties of PIPs in the complex membrane environment is important to understand how PIPs selectively regulate a partner protein. Here, we investigate the structure and dynamics of PIP in lipid bilayers that are simplified models of the natural membrane environment. We probe the effects of the anionic lipid phosphatidylserine (PS) and the divalent cation Ca by using full-length lipids in well-formed bilayers. We used solution and solid-state NMR on naturally abundant H, P, and C atoms combined with molecular dynamics (MD) simulations to characterize the structure and dynamics of PIPs. H and P 1D spectra show good resolution at temperatures above the phase transition with isolated peaks in the headgroup, interfacial, and bilayer regions. Site-specific assignment of the chemical shifts of these reporters enables the measurement of the effects of Ca and PS at the single atom level. In particular, the resolved P signals of the PIP headgroup allow for extremely well-localized information about PIP phosphate dynamics, which the MD simulations can further explain. A quantitative assessment of cross-polarization kinetics provides additional dynamics measurements for the PIP headgroups.
磷脂酰肌醇磷酸酯(PIPs)是一类由七种不同的真核生物膜脂组成的家族,尽管它们在真核细胞膜中的浓度较低,但在细胞活力方面发挥着重要作用。PIPs通过与伴侣蛋白的直接相互作用,紧密调节细胞过程,如细胞生长、代谢、免疫和发育。了解复杂膜环境中PIPs的生物物理特性对于理解PIPs如何选择性调节伴侣蛋白至关重要。在这里,我们研究了脂质双层中PIP的结构和动力学,脂质双层是天然膜环境的简化模型。我们通过在结构良好的双层中使用全长脂质,探究了阴离子脂质磷脂酰丝氨酸(PS)和二价阳离子Ca的影响。我们结合分子动力学(MD)模拟,对天然丰度的H、P和C原子进行溶液和固态核磁共振,以表征PIPs的结构和动力学。H和P的一维谱在高于相变温度时具有良好的分辨率,在头部基团、界面和双层区域有孤立的峰。这些报告基团化学位移的位点特异性归属能够在单原子水平上测量Ca和PS的影响。特别是,PIP头部基团的分辨P信号提供了关于PIP磷酸动力学的高度定位信息,MD模拟可以进一步解释这些信息。交叉极化动力学的定量评估为PIP头部基团提供了额外的动力学测量。