Niu Jinyun, Zhu Fangfang, Fang Donghai, Min Wenwen
School of Information Science and Engineering, Yunnan University, Kunming, 650500, China.
School of Health and Nursing, Yunnan Open University, Kunming, 650599, China.
Interdiscip Sci. 2024 Dec 16. doi: 10.1007/s12539-024-00676-1.
The advent of spatially resolved transcriptomics (SRT) has provided critical insights into the spatial context of tissue microenvironments. Spatial clustering is a fundamental aspect of analyzing spatial transcriptomics data. However, spatial clustering methods often suffer from instability caused by the sparsity and high noise in the SRT data. To address this challenge, we propose SpatialCVGAE, a consensus clustering framework designed for SRT data analysis. SpatialCVGAE adopts the expression of high-variable genes from different dimensions along with multiple spatial graphs as inputs to variational graph autoencoders (VGAEs), learning multiple latent representations for clustering. These clustering results are then integrated using a consensus clustering approach, which enhances the model's stability and robustness by combining multiple clustering outcomes. Experiments demonstrate that SpatialCVGAE effectively mitigates the instability typically associated with non-ensemble deep learning methods, significantly improving both the stability and accuracy of the results. Compared to previous non-ensemble methods in representation learning and post-processing, our method fully leverages the diversity of multiple representations to accurately identify spatial domains, showing superior robustness and adaptability. All code and public datasets used in this paper are available at https://github.com/wenwenmin/SpatialCVGAE .
空间分辨转录组学(SRT)的出现为深入了解组织微环境的空间背景提供了关键见解。空间聚类是分析空间转录组学数据的一个基本方面。然而,空间聚类方法常常受到SRT数据稀疏性和高噪声所导致的不稳定性的影响。为应对这一挑战,我们提出了SpatialCVGAE,这是一个专为SRT数据分析设计的一致性聚类框架。SpatialCVGAE采用来自不同维度的高变基因的表达以及多个空间图作为变分图自编码器(VGAE)的输入,学习多个潜在表示用于聚类。然后使用一致性聚类方法整合这些聚类结果,通过组合多个聚类结果来增强模型的稳定性和鲁棒性。实验表明,SpatialCVGAE有效缓解了通常与非集成深度学习方法相关的不稳定性,显著提高了结果的稳定性和准确性。与先前在表示学习和后处理中的非集成方法相比,我们的方法充分利用了多个表示的多样性来准确识别空间域,表现出卓越的鲁棒性和适应性。本文使用的所有代码和公共数据集可在https://github.com/wenwenmin/SpatialCVGAE获取。