Suppr超能文献

基于直肠内超声成像的深度学习、影像组学及融合模型在预测直肠癌KRAS基因突变中的瘤内与瘤周比较

Comparison of Intratumoral and Peritumoral Deep Learning, Radiomics, and Fusion Models for Predicting KRAS Gene Mutations in Rectal Cancer Based on Endorectal Ultrasound Imaging.

作者信息

Gan Yajiao, Hu Qiping, Shen Qingling, Lin Peng, Qian Qingfu, Zhuo Minling, Xue Ensheng, Chen Zhikui

机构信息

Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China.

出版信息

Ann Surg Oncol. 2025 Apr;32(4):3019-3030. doi: 10.1245/s10434-024-16697-5. Epub 2024 Dec 17.

Abstract

MAIN OBJECTIVES

We aimed at comparing intratumoral and peritumoral deep learning, radiomics, and fusion models in predicting KRAS mutations in rectal cancer using endorectal ultrasound imaging.

METHODS

This study included 304 patients with rectal cancer from Fujian Medical University Union Hospital. The patients were randomly divided into a training group (213 patients) and a test group (91 patients) at a 7:3 ratio. Radiomics and deep learning models were established using primary tumor and peritumoral images. In the optimally performing regions-of-interest, two fusion strategies, a feature-based and a decision-based model, were employed to build the fusion models. The Shapley additive explanation (SHAP) method was used to evaluate the significance of features in the optimal radiomics, deep learning, and fusion models. The performance of each model was assessed using the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA).

RESULTS

In the test cohort, both the radiomics and deep learning models exhibited optimal performance with a 10-pixel patch extension, yielding AUC values of 0.824 and 0.856, respectively. The feature-based DLRexpand10_FB model attained the highest AUC (0.896) across all study sets. In addition, the DLRexpand10_FB model demonstrated excellent sensitivity, specificity, and DCA. SHAP analysis underscored the deep learning feature (DL_1) as the most significant factor in the hybrid model.

CONCLUSION

The feature-based fusion model DLRexpand10_FB can be employed to predict KRAS gene mutations based on pretreatment endorectal ultrasound images of rectal cancer. The integration of peritumoral regions enhanced the predictive performance of both the radiomics and deep learning models.

摘要

主要目标

我们旨在比较肿瘤内和肿瘤周围的深度学习、放射组学及融合模型,以利用直肠内超声成像预测直肠癌中的KRAS突变。

方法

本研究纳入了福建医科大学附属协和医院的304例直肠癌患者。患者按7:3的比例随机分为训练组(213例患者)和测试组(91例患者)。使用原发肿瘤和肿瘤周围图像建立放射组学和深度学习模型。在表现最佳的感兴趣区域,采用两种融合策略,即基于特征的模型和基于决策的模型,来构建融合模型。使用夏普利加性解释(SHAP)方法评估最佳放射组学、深度学习和融合模型中特征的重要性。使用受试者工作特征曲线下面积(AUC)和决策曲线分析(DCA)评估每个模型的性能。

结果

在测试队列中,放射组学和深度学习模型在扩展10像素补丁时均表现出最佳性能,AUC值分别为0.824和0.856。基于特征的DLRexpand10_FB模型在所有研究集中获得了最高的AUC(0.896)。此外,DLRexpand10_FB模型表现出出色的敏感性、特异性和DCA。SHAP分析强调深度学习特征(DL_1)是混合模型中最重要的因素。

结论

基于特征的融合模型DLRexpand10_FB可用于基于直肠癌术前直肠内超声图像预测KRAS基因突变。肿瘤周围区域的整合提高了放射组学和深度学习模型的预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验