Suppr超能文献

丙酮酸丰度通过谷胱甘肽代谢干扰氨基糖苷类药物对多重耐药菌的杀伤作用。

Pyruvate Abundance Confounds Aminoglycoside Killing of Multidrug-Resistant Bacteria via Glutathione Metabolism.

作者信息

Xiang Jiao, Tian Si-Qi, Wang Shi-Wen, Liu Ying-Li, Li Hui, Peng Bo

机构信息

State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China.

Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.

出版信息

Research (Wash D C). 2024 Dec 18;7:0554. doi: 10.34133/research.0554. eCollection 2024.

Abstract

To explore whether the metabolic state reprogramming approach may be used to explore previously unknown metabolic pathways that contribute to antibiotic resistance, especially those that have been neglected in previous studies, pyruvate reprogramming was performed to reverse the resistance of multidrug-resistant . Surprisingly, we identified a pyruvate-regulated glutathione system that occurs by boosting glycine, serine, and threonine metabolism. Moreover, cysteine and methionine metabolism played a key role in this reversal. This process involved pyruvate-depressed glutathione and pyruvate-promoted glutathione oxidation, which was attributed to the elevated glutathione peroxidase and depressed glutathione reductase that was inhibited by glycine. This regulation inhibited reactive oxygen species (ROS) degradation and thereby elevated ROS to eliminate . Loss of , , and of the metabolic pathways increased and decreased resistance, respectively, both in vitro and in vivo, thereby supporting the hypothesis of a pyruvate-cysteine-glutathione system/glycine-ROS metabolic pathway. The role of this metabolic pathway in drug resistance and reprogramming reversal was demonstrated in laboratory-evolved gentamicin-resistant and other clinically isolated multidrug- and carbapenem-resistant pathogens. Thus, we reveal a less studied antibiotic resistance metabolic pathway along with the mechanisms involved in its reversal.

摘要

为了探索代谢状态重编程方法是否可用于探索导致抗生素耐药性的先前未知的代谢途径,尤其是那些在先前研究中被忽视的途径,进行了丙酮酸重编程以逆转多药耐药性。令人惊讶的是,我们发现了一种通过促进甘氨酸、丝氨酸和苏氨酸代谢而出现的丙酮酸调节的谷胱甘肽系统。此外,半胱氨酸和甲硫氨酸代谢在这种逆转中起关键作用。这个过程涉及丙酮酸抑制的谷胱甘肽和丙酮酸促进的谷胱甘肽氧化,这归因于被甘氨酸抑制的谷胱甘肽过氧化物酶升高和谷胱甘肽还原酶降低。这种调节抑制了活性氧(ROS)的降解,从而升高ROS以消除……代谢途径中……、……和……的缺失分别在体外和体内增加和降低了耐药性,从而支持了丙酮酸 - 半胱氨酸 - 谷胱甘肽系统/甘氨酸 - ROS代谢途径的假设。这种代谢途径在耐药性和重编程逆转中的作用在实验室进化的庆大霉素耐药……以及其他临床分离的多药和碳青霉烯耐药病原体中得到了证实。因此,我们揭示了一条研究较少的抗生素耐药性代谢途径及其逆转所涉及的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b12/11654824/2034dbdd40b4/research.0554.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验