Almadani Abdulsalam, Sarwar Atifa, Agu Emmanuel, Ahluwalia Monica, Kpodonu Jacques
Data Science ProgramWorcester Polytechnic Institute Worcester MA 01609 USA.
College of Computer and Information SciencesImam Mohammad Ibn Saud Islamic University Riyadh 13318 Saudi Arabia.
IEEE Open J Eng Med Biol. 2024 Oct 25;6:193-201. doi: 10.1109/OJEMB.2024.3486541. eCollection 2025.
To detect Hypertrophic Cardiomyopathy (HCM) from multiple views of Echocardiogram (cardiac ultrasound) videos. we propose , a novel framework that performs binary classification (HCM vs. no HCM) of echocardiogram videos directly using an ensemble of state-of-the-art deep VAR architectures models (SlowFast and I3D), and fuses their predictions using majority averaging ensembling. achieved state-of-the-art accuracy of 95.28%, an F1-Score of 95.20%, a specificity of 96.20%, a sensitivity of 93.97%, a PPV of 96.46%, an NPV of 94.17%, and an AUC of 98.42%, outperforming a comprehensive set of baselines including other ensembling approaches. Our proposed HCM-Echo-VAR-Ensemble framework demonstrates significant potential for improving the sensitivity and accuracy of HCM detection in clinical settings, particularly by ensembling the complementary strengths of the SlowFast and I3D deep VAR models. This approach can enhance diagnostic consistency and accuracy, enabling reliable HCM diagnoses even in low-resource environments.
为了从超声心动图(心脏超声)视频的多个视图中检测肥厚型心肌病(HCM),我们提出了一种新颖的框架,该框架直接使用最先进的深度VAR架构模型(SlowFast和I3D)的集成对超声心动图视频进行二元分类(HCM与非HCM),并使用多数平均集成法融合它们的预测结果。该框架实现了95.28%的最新准确率、95.20%的F1分数、96.20%的特异性、93.97%的灵敏度、96.46%的阳性预测值、94.17%的阴性预测值以及98.42%的曲线下面积,优于包括其他集成方法在内的一整套基线方法。我们提出的HCM-Echo-VAR-Ensemble框架在提高临床环境中HCM检测的灵敏度和准确率方面显示出巨大潜力,特别是通过集成SlowFast和I3D深度VAR模型的互补优势。这种方法可以提高诊断的一致性和准确性,即使在资源匮乏的环境中也能实现可靠的HCM诊断。