Suppr超能文献

使用不同电离、计算和可视化方法对微生物天然产物进行空间代谢组分析的快速且强大的工作流程

Rapid and Robust Workflows Using Different Ionization, Computation, and Visualization Approaches for Spatial Metabolome Profiling of Microbial Natural Products in .

作者信息

Yu Jian, Metwally Haidy, Kolwich Jennifer, Tomm Hailey, Kaufmann Martin, Klotz Rachel, Liu Chang, Le Blanc J C Yves, Covey Thomas R, Rudan John, Ross Avena C, Oleschuk Richard D

机构信息

Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7K 0C2.

Department of Surgery, Queen's University, Kingston, Ontario, Canada K7L 2V7.

出版信息

ACS Meas Sci Au. 2024 Oct 21;4(6):668-677. doi: 10.1021/acsmeasuresciau.4c00035. eCollection 2024 Dec 18.

Abstract

Ambient mass spectrometry (MS) technologies have been applied to spatial metabolomic profiling of various samples in an attempt to both increase analysis speed and reduce the length of sample preparation. Recent studies, however, have focused on improving the spatial resolution of ambient approaches. Finer resolution requires greater analysis times and commensurate computing power for more sophisticated data analysis algorithms and larger data sets. Higher resolution provides a more detailed molecular picture of the sample; however, for some applications, this is not required. A liquid microjunction surface sampling probe (LMJ-SSP) based MS platform combined with unsupervised multivariant analysis based hyperspectral visualization is demonstrated for the metabolomic analysis of marine bacteria from the genus to create a rapid and robust spatial profiling workflow for microbial natural product screening. In our study, metabolomic profiles of different species are quickly acquired without any sample preparation and distinguished by unsupervised multivariant analysis. Our robust platform is capable of automated direct sampling of microbes cultured on agar without clogging. Hyperspectral visualization-based rapid spatial profiling provides adequate spatial metabolite information on microbial samples through red-green-blue (RGB) color annotation. Both static and temporal metabolome differences can be visualized by straightforward color differences and differentiating / values identified afterward. Through this approach, novel analogues and their potential biosynthetic pathways are discovered by applying results from the spatial navigation to chromatography-based metabolome annotation. In this current research, LMJ-SSP is shown to be a robust and rapid spatial profiling method. Unsupervised multivariant analysis based hyperspectral visualization is proven straightforward for facile/rapid data interpretation. The combination of direct analysis and innovative data visualization forms a powerful tool to aid the identification/interpretation of interesting compounds from conventional metabolomics analysis.

摘要

常压质谱(MS)技术已应用于各种样品的空间代谢组学分析,旨在提高分析速度并缩短样品制备时间。然而,最近的研究集中在提高常压分析方法的空间分辨率上。更高的分辨率需要更长的分析时间以及更强的计算能力,以用于更复杂的数据分析算法和更大的数据集。更高的分辨率能提供更详细的样品分子图谱;然而,对于某些应用而言,这并非必需。本文展示了一种基于液体微通道表面采样探针(LMJ-SSP)的质谱平台,结合基于无监督多变量分析的高光谱可视化技术,用于对某属海洋细菌进行代谢组学分析,以创建一种快速且稳健的空间分析工作流程,用于微生物天然产物筛选。在我们的研究中,无需任何样品制备即可快速获取不同种的代谢组图谱,并通过无监督多变量分析进行区分。我们强大的平台能够对琼脂平板上培养的微生物进行自动直接采样而不会堵塞。基于高光谱可视化的快速空间分析通过红-绿-蓝(RGB)颜色标注,为微生物样品提供了足够的空间代谢物信息。静态和动态代谢组差异均可通过直观的颜色差异以及随后确定的/值差异进行可视化。通过这种方法,将空间导航的结果应用于基于色谱的代谢组注释,从而发现新的类似物及其潜在的生物合成途径。在当前这项研究中,LMJ-SSP被证明是一种强大且快速的空间分析方法。基于无监督多变量分析的高光谱可视化被证明对于便捷/快速的数据解读很直接。直接分析与创新数据可视化的结合形成了一个强大的工具,有助于从传统代谢组学分析中识别/解读感兴趣的化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac0d/11659995/ab1d7827eeb4/tg4c00035_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验