Zhang Ce, Liang Dan, Ercan-Sencicek A Gulhan, Bulut Aybike S, Cortes Joelly, Cheng Iris Q, Henegariu Octavian, Nishimura Sayoko, Wang Xinyuan, Peksen A Buket, Takeo Yutaka, Caglar Caner, Lam TuKiet T, Koroglu Merve Nur, Narayanan Anand, Lopez-Giraldez Francesc, Miyagishima Danielle F, Mishra-Gorur Ketu, Barak Tanyeri, Yasuno Katsuhito, Erson-Omay E Zeynep, Yalcinkaya Cengiz, Wang Guilin, Mane Shrikant, Kaymakcalan Hande, Guzel Aslan, Caglayan A Okay, Tuysuz Beyhan, Sestan Nenad, Gunel Murat, Louvi Angeliki, Bilguvar Kaya
Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
MD-PhD Program, Yale School of Medicine, New Haven, CT, USA.
Nature. 2025 Feb;638(8049):172-181. doi: 10.1038/s41586-024-08341-9. Epub 2025 Jan 1.
Cerebral cortex development in humans is a highly complex and orchestrated process that is under tight genetic regulation. Rare mutations that alter gene expression or function can disrupt the structure of the cerebral cortex, resulting in a range of neurological conditions. Lissencephaly ('smooth brain') spectrum disorders comprise a group of rare, genetically heterogeneous congenital brain malformations commonly associated with epilepsy and intellectual disability. However, the molecular mechanisms underlying disease pathogenesis remain unknown. Here we establish hypoactivity of the mTOR pathway as a clinically relevant molecular mechanism in lissencephaly spectrum disorders. We characterized two types of cerebral organoid derived from individuals with genetically distinct lissencephalies with a recessive mutation in p53-induced death domain protein 1 (PIDD1) or a heterozygous chromosome 17p13.3 microdeletion leading to Miller-Dieker lissencephaly syndrome (MDLS). PIDD1-mutant organoids and MDLS organoids recapitulated the thickened cortex typical of human lissencephaly and demonstrated dysregulation of protein translation, metabolism and the mTOR pathway. A brain-selective activator of mTOR complex 1 prevented and reversed cellular and molecular defects in the lissencephaly organoids. Our findings show that a converging molecular mechanism contributes to two genetically distinct lissencephaly spectrum disorders.
人类大脑皮层的发育是一个高度复杂且精心编排的过程,受到严格的基因调控。改变基因表达或功能的罕见突变会破坏大脑皮层的结构,导致一系列神经疾病。无脑回畸形(“光滑脑”)谱系障碍是一组罕见的、基因异质性的先天性脑畸形,通常与癫痫和智力残疾有关。然而,疾病发病机制的分子机制仍不清楚。在这里,我们确定mTOR通路功能减退是无脑回畸形谱系障碍中一种与临床相关的分子机制。我们对两种源自具有不同基因类型无脑回畸形个体的脑类器官进行了表征,这些个体分别存在p53诱导死亡结构域蛋白1(PIDD1)的隐性突变或导致米勒-迪克尔无脑回畸形综合征(MDLS)的17号染色体p13.3杂合微缺失。PIDD1突变的类器官和MDLS类器官重现了人类无脑回畸形典型的增厚皮层,并表现出蛋白质翻译、代谢和mTOR通路的失调。mTOR复合物1的脑选择性激活剂预防并逆转了无脑回畸形类器官中的细胞和分子缺陷。我们的研究结果表明,一种趋同的分子机制导致了两种基因不同的无脑回畸形谱系障碍。