Suppr超能文献

外源24-表油菜素内酯通过增加途径基因()和的表达来减轻秋葵的盐胁迫。

Exogenous 24-Epibrassinolide alleviates salt stress in Okra L by increasing the expression of pathway genes () and .

作者信息

Yousefi Kazhal, Jamei Rashid, Darvishzadeh Reza

机构信息

Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran.

Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.

出版信息

Physiol Mol Biol Plants. 2024 Dec;30(12):2051-2063. doi: 10.1007/s12298-024-01515-9. Epub 2024 Nov 1.

Abstract

Given the rising population and food demand, it is imperative to devise solutions to enhance plant resilience against abiotic stresses. Salinity stress impacts plant growth but also hampers plant performance and productivity. Plant hormones have emerged as a viable remedy to mitigate the detrimental effects of salinity stress on plants. This study delved into the molecular investigation of the impact of 24-Epibrassinolide (EBL) on Okra plants ( L.) under two levels of salinity stress (75 and 150 mM), scrutinizing morphological, biochemical, and physiological parameters. Salinity stress led to a decline in growth, pigment and protein content, with EBL application ameliorating these indicators, albeit insignificantly impacting protein levels. Salinity triggered an upsurge in soluble sugars, proline, antioxidant enzymes (CAT, SOD, GP, and APX), and sodium levels, while reducing potassium and micronutrient concentrations (copper, iron, zinc). It downregulated the expression of , and genes. EBL treatment bolstered potassium and micronutrient uptake, upregulated gene expression and enzymatic antioxidants, and elevated soluble sugar and proline levels. Analysis of the outcomes across these parameters suggests that EBL holds promise as an effective agent in mitigating salinity stress in Okra plants.

摘要

鉴于人口增长和粮食需求不断上升,必须想出办法来增强植物对非生物胁迫的抵御能力。盐胁迫不仅影响植物生长,还会阻碍植物的性能和生产力。植物激素已成为减轻盐胁迫对植物有害影响的一种可行补救措施。本研究深入探讨了24-表油菜素内酯(EBL)在两种盐胁迫水平(75和150 mM)下对秋葵植株(L.)的影响的分子研究,仔细观察了形态、生化和生理参数。盐胁迫导致生长、色素和蛋白质含量下降,施用EBL改善了这些指标,尽管对蛋白质水平影响不显著。盐胁迫引发可溶性糖、脯氨酸、抗氧化酶(CAT、SOD、GP和APX)和钠水平的升高,同时降低了钾和微量营养素浓度(铜、铁、锌)。它下调了 、 和 基因的表达。EBL处理促进了钾和微量营养素的吸收,上调了基因表达和酶促抗氧化剂,并提高了可溶性糖和脯氨酸水平。对这些参数的结果分析表明,EBL有望成为减轻秋葵植株盐胁迫的有效试剂。

相似文献

1
Exogenous 24-Epibrassinolide alleviates salt stress in Okra L by increasing the expression of pathway genes () and .
Physiol Mol Biol Plants. 2024 Dec;30(12):2051-2063. doi: 10.1007/s12298-024-01515-9. Epub 2024 Nov 1.
2
Putrescine mitigates NaCl-induced stress by modulating gene expression, antioxidants, and ethylene level in tomato.
Plant Signal Behav. 2025 Dec;20(1):2515431. doi: 10.1080/15592324.2025.2515431. Epub 2025 Jun 16.
3
Converting waste into opportunity: silica nanoparticles for mitigating salinity stress in wheat "".
Int J Phytoremediation. 2025 Jun 18:1-13. doi: 10.1080/15226514.2025.2519276.
4
Salt-Tolerant Bacteria Support Salinity Stress Mitigating Impact of Arbuscular Mycorrhizal Fungi in Maize ( L.).
Microorganisms. 2025 Jun 10;13(6):1345. doi: 10.3390/microorganisms13061345.
5
Regulation of APX, SOD, and PAL genes by chitosan under salt stress in rapeseed (Brassica napus L.).
BMC Plant Biol. 2025 Jul 2;25(1):824. doi: 10.1186/s12870-025-06815-0.
6
Effects of okra (Abelmoschus esculentus (L.) Moench) on glycemic markers in animal models of diabetes: A systematic review.
J Ethnopharmacol. 2022 Nov 15;298:115544. doi: 10.1016/j.jep.2022.115544. Epub 2022 Aug 10.
10

引用本文的文献

本文引用的文献

1
Plants' Response Mechanisms to Salinity Stress.
Plants (Basel). 2023 Jun 8;12(12):2253. doi: 10.3390/plants12122253.
2
Exogenous 24-epibrassinolide promoted growth and nitrogen absorption and assimilation efficiency of apple seedlings under salt stress.
Front Plant Sci. 2023 Apr 14;14:1178085. doi: 10.3389/fpls.2023.1178085. eCollection 2023.
5
Abiotic Stress Tolerance in Plants: Brassinosteroids Navigate Competently.
Int J Mol Sci. 2022 Nov 23;23(23):14577. doi: 10.3390/ijms232314577.
6
Enhancement of cucumber resistance under salt stress by 2, 4-epibrassinolide lactones.
Front Plant Sci. 2022 Nov 9;13:1023178. doi: 10.3389/fpls.2022.1023178. eCollection 2022.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验