Suppr超能文献

一种基于MRI影像组学的机器学习模型,用于预测直肠癌患者对放化疗的反应。

A Machine Learning Model Based on MRI Radiomics to Predict Response to Chemoradiation Among Patients with Rectal Cancer.

作者信息

Crimì Filippo, D'Alessandro Carlo, Zanon Chiara, Celotto Francesco, Salvatore Christian, Interlenghi Matteo, Castiglioni Isabella, Quaia Emilio, Pucciarelli Salvatore, Spolverato Gaya

机构信息

Institute of Radiology, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy.

Third Surgical Clinic, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), University of Padova, 35128 Padova, Italy.

出版信息

Life (Basel). 2024 Nov 22;14(12):1530. doi: 10.3390/life14121530.

Abstract

BACKGROUND

With rectum-sparing protocols becoming more common for rectal cancer treatment, this study aimed to predict the pathological complete response (pCR) to preoperative chemoradiotherapy (pCRT) in rectal cancer patients using pre-treatment MRI and a radiomics-based machine learning approach.

METHODS

We divided MRI-data from 102 patients into a training cohort ( = 72) and a validation cohort ( = 30). In the training cohort, 52 patients were classified as non-responders and 20 as pCR based on histological results from total mesorectal excision.

RESULTS

We trained various machine learning models using radiomic features to capture disease heterogeneity between responders and non-responders. The best-performing model achieved a receiver operating characteristic area under the curve (ROC-AUC) of 73% and an accuracy of 70%, with a sensitivity of 78% and a positive predictive value (PPV) of 80%. In the validation cohort, the model showed a sensitivity of 81%, specificity of 75%, and accuracy of 80%.

CONCLUSIONS

These results highlight the potential of radiomics and machine learning in predicting treatment response and support the integration of advanced imaging and computational methods for personalized rectal cancer management.

摘要

背景

随着保留直肠方案在直肠癌治疗中变得越来越普遍,本研究旨在使用治疗前磁共振成像(MRI)和基于影像组学的机器学习方法预测直肠癌患者对术前放化疗(pCRT)的病理完全缓解(pCR)。

方法

我们将102例患者的MRI数据分为训练队列(n = 72)和验证队列(n = 30)。在训练队列中,根据全直肠系膜切除的组织学结果,52例患者被分类为无反应者,20例为pCR。

结果

我们使用影像组学特征训练了各种机器学习模型,以捕捉反应者和无反应者之间的疾病异质性。表现最佳的模型的曲线下面积(ROC-AUC)为73%,准确率为70%,敏感性为78%,阳性预测值(PPV)为80%。在验证队列中,该模型的敏感性为81%,特异性为75%,准确率为80%。

结论

这些结果突出了影像组学和机器学习在预测治疗反应方面的潜力,并支持将先进的成像和计算方法整合到个性化直肠癌管理中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5361/11677041/c63eb1f62032/life-14-01530-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验