Suppr超能文献

考虑显性和上位性遗传效应的大白猪产仔数性状基因组预测

Genomic prediction accounting for dominance and epistatic genetic effects on litter size traits in Large White pigs.

作者信息

Chen Jianmei, Dou Tengfei, Wu Ziyi, Bai Liyao, Xu Man, Zhang Yongqian, Yang Songbai, Xu Shiqian, Han Xuelei, Qiao Ruimin, Wang Kejun, Yang Feng, Li Xin-Jian, Wang Xianwei, Li Xiu-Ling

机构信息

College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, PR China.

Henan Xunxian Pig Science and Technology Backyard, Hebi, PR China.

出版信息

J Anim Sci. 2025 Jan 4;103. doi: 10.1093/jas/skaf004.

Abstract

Litter size traits of sows are crucial for the economic benefits of the pig industry. Three phenotypic traits of 1,206 Large White pigs, the total number born (TNB), number born alive (NBA), and number of healthy piglets (NHP), were recorded. We evaluated a series of genomic best linear unbiased prediction models that sequentially added additive effects (model A), dominance effects (model A + D), and epistatic effects (model A + D + AA, model A + D + AA + AD, and model A + D + AA + AD + DD) using chip data and imputed whole-genome sequencing (WGS) data to estimate genetic parameters and predictive accuracy. The reproductive traits of sows showed low heritability in this study, with narrow heritability of the 3 traits ranging from 0.030 to 0.064, and broad heritability ranging from 0.125 to 0.145. The inclusion of nonadditive effects in the model improved the accuracy of genomic selection. In the chip data, compared with that of the A model, the A + D + AA + AD + DD model showed the greatest increase in accuracy for TNB, NBA, and NHP, with improvements of 1.78%, 1.67%, and 1.74%, respectively. Additionally, the accuracy of the imputed WGS data was greater compared to the chip data. For the TNB, NBA, and NHP traits, the predictive accuracy of the imputed WGS data improved by 3.26%, 7.72%, and 3.00%, respectively, compared with that of the chip data. In summary, these results suggest that nonadditive effects in genomic selection could improve prediction accuracy and should be considered in pig genomic evaluation procedures.

摘要

母猪的窝产仔数性状对养猪业的经济效益至关重要。记录了1206头大白猪的三个表型性状,即总产仔数(TNB)、产活仔数(NBA)和健康仔猪数(NHP)。我们评估了一系列基因组最佳线性无偏预测模型,这些模型依次添加加性效应(模型A)、显性效应(模型A + D)和上位性效应(模型A + D + AA、模型A + D + AA + AD和模型A + D + AA + AD + DD),使用芯片数据和推算的全基因组测序(WGS)数据来估计遗传参数和预测准确性。在本研究中,母猪的繁殖性状显示出低遗传力,这三个性状的狭义遗传力范围为0.030至0.064,广义遗传力范围为0.125至0.145。模型中纳入非加性效应提高了基因组选择的准确性。在芯片数据中,与A模型相比,A + D + AA + AD + DD模型在TNB、NBA和NHP的准确性上提高幅度最大,分别提高了1.78%、1.67%和1.74%。此外,推算的WGS数据的准确性高于芯片数据。对于TNB、NBA和NHP性状,与芯片数据相比,推算的WGS数据的预测准确性分别提高了3.26%、7.72%和3.00%。总之,这些结果表明基因组选择中的非加性效应可以提高预测准确性,在猪基因组评估程序中应予以考虑。

相似文献

5
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.
7
Genome Selection and Genome-Wide Association Analyses for Litter Size Traits in Large White Pigs.
Animals (Basel). 2025 Jun 11;15(12):1724. doi: 10.3390/ani15121724.

本文引用的文献

2
A compendium of genetic regulatory effects across pig tissues.
Nat Genet. 2024 Jan;56(1):112-123. doi: 10.1038/s41588-023-01585-7. Epub 2024 Jan 4.
3
AGIDB: a versatile database for genotype imputation and variant decoding across species.
Nucleic Acids Res. 2024 Jan 5;52(D1):D835-D849. doi: 10.1093/nar/gkad913.
4
IAnimal: a cross-species omics knowledgebase for animals.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1312-D1324. doi: 10.1093/nar/gkac936.
9
Fast two-stage phasing of large-scale sequence data.
Am J Hum Genet. 2021 Oct 7;108(10):1880-1890. doi: 10.1016/j.ajhg.2021.08.005. Epub 2021 Sep 2.
10
Genome-wide association studies reveals polygenic genetic architecture of litter traits in Duroc pigs.
Theriogenology. 2021 Oct 1;173:269-278. doi: 10.1016/j.theriogenology.2021.08.012. Epub 2021 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验