Suppr超能文献

多样化产生反转录元件中逆转录的RNA调控

RNA control of reverse transcription in a diversity-generating retroelement.

作者信息

Handa Sumit, Biswas Tapan, Chakraborty Jeet, Ghosh Gourisankar, Paul Blair G, Ghosh Partho

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.

10X Genomics, Pleasanton, CA, USA.

出版信息

Nature. 2025 Feb;638(8052):1122-1129. doi: 10.1038/s41586-024-08405-w. Epub 2025 Jan 8.

Abstract

Diversity-generating retroelements (DGRs) create massive protein sequence variation (up to 10) in ecologically diverse microorganisms. A recent survey identified around 31,000 DGRs from more than 1,500 bacterial and archaeal genera, constituting more than 90 environment types. DGRs are especially enriched in the human gut microbiome and nano-sized microorganisms that seem to comprise most microbial life and maintain DGRs despite reduced genomes. DGRs are also implicated in the emergence of multicellularity. Variation occurs during reverse transcription of a protein-encoding RNA template coupled to misincorporation at adenosines. In the prototypical Bordetella bacteriophage DGR, the template must be surrounded by upstream and downstream RNA segments for complementary DNA synthesis to be carried out by a complex of the DGR reverse transcriptase bRT and associated protein Avd. The function of the surrounding RNA was unknown. Here we show through cryogenic electron microscopy that this RNA envelops bRT and lies over the barrel-shaped Avd, forming an intimate ribonucleoprotein. An abundance of essential interactions in the ribonucleoprotein precisely position an RNA homoduplex in the bRT active site for initiation of reverse transcription. Our results explain how the surrounding RNA primes complementary DNA synthesis, promotes processivity, terminates polymerization and strictly limits mutagenesis to specific proteins through mechanisms that are probably conserved in DGRs belonging to distant taxa.

摘要

多样性产生逆转录元件(DGRs)在生态多样的微生物中创造了大量的蛋白质序列变异(高达10种)。最近的一项调查从1500多个细菌和古菌属中鉴定出约31000个DGRs,涵盖了90多种环境类型。DGRs在人类肠道微生物群和纳米级微生物中尤其丰富,这些微生物似乎构成了大多数微生物生命形式,并且尽管基因组缩小但仍保留着DGRs。DGRs还与多细胞性的出现有关。变异发生在蛋白质编码RNA模板的逆转录过程中,同时伴随着腺苷处的错误掺入。在典型的博德特氏菌噬菌体DGR中,模板必须被上游和下游RNA片段包围,以便由DGR逆转录酶bRT和相关蛋白Avd组成的复合物进行互补DNA合成。周围RNA的功能尚不清楚。在这里,我们通过低温电子显微镜显示,这种RNA包裹着bRT并位于桶状的Avd上方,形成了一个紧密的核糖核蛋白。核糖核蛋白中大量的关键相互作用将一个RNA同型双链体精确地定位在bRT活性位点,以启动逆转录。我们的结果解释了周围RNA如何引发互补DNA合成、促进持续性、终止聚合反应,并通过可能在远缘分类群的DGR中保守的机制将诱变严格限制在特定蛋白质上。

相似文献

1
RNA control of reverse transcription in a diversity-generating retroelement.
Nature. 2025 Feb;638(8052):1122-1129. doi: 10.1038/s41586-024-08405-w. Epub 2025 Jan 8.
2
Structural Requirements for Reverse Transcription by a Diversity-generating Retroelement.
bioRxiv. 2024 Jun 12:2023.10.23.563531. doi: 10.1101/2023.10.23.563531.
3
DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA.
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):E10187-E10195. doi: 10.1073/pnas.1715952114. Epub 2017 Nov 6.
4
Template-assisted synthesis of adenine-mutagenized cDNA by a retroelement protein complex.
Nucleic Acids Res. 2018 Oct 12;46(18):9711-9725. doi: 10.1093/nar/gky620.
5
Determinants of adenine-mutagenesis in diversity-generating retroelements.
Nucleic Acids Res. 2021 Jan 25;49(2):1033-1045. doi: 10.1093/nar/gkaa1240.
7
Target site recognition by a diversity-generating retroelement.
PLoS Genet. 2011 Dec;7(12):e1002414. doi: 10.1371/journal.pgen.1002414. Epub 2011 Dec 15.
8
9
Diversity-generating Retroelements in Phage and Bacterial Genomes.
Microbiol Spectr. 2014 Dec;2(6). doi: 10.1128/microbiolspec.MDNA3-0029-2014.
10
Diversity-generating retroelements.
Curr Opin Microbiol. 2007 Aug;10(4):388-95. doi: 10.1016/j.mib.2007.06.004. Epub 2007 Aug 20.

引用本文的文献

2
Structural Basis for Retron Co-option of Anti-phage ATPase-nuclease.
bioRxiv. 2025 May 13:2025.05.10.653283. doi: 10.1101/2025.05.10.653283.

本文引用的文献

1
Targeted hypermutation of putative antigen sensors in multicellular bacteria.
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2316469121. doi: 10.1073/pnas.2316469121. Epub 2024 Feb 14.
2
Template and target-site recognition by human LINE-1 in retrotransposition.
Nature. 2024 Feb;626(7997):186-193. doi: 10.1038/s41586-023-06933-5. Epub 2023 Dec 14.
3
UCSF ChimeraX: Tools for structure building and analysis.
Protein Sci. 2023 Nov;32(11):e4792. doi: 10.1002/pro.4792.
4
Structural RNA components supervise the sequential DNA cleavage in R2 retrotransposon.
Cell. 2023 Jun 22;186(13):2865-2879.e20. doi: 10.1016/j.cell.2023.05.032. Epub 2023 Jun 9.
5
Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription.
Science. 2023 Apr 21;380(6642):301-308. doi: 10.1126/science.adg7883. Epub 2023 Apr 6.
6
Structures of a mobile intron retroelement poised to attack its structured DNA target.
Science. 2022 Nov 11;378(6620):627-634. doi: 10.1126/science.abq2844. Epub 2022 Nov 10.
7
Structure of active human telomerase with telomere shelterin protein TPP1.
Nature. 2022 Apr;604(7906):578-583. doi: 10.1038/s41586-022-04582-8. Epub 2022 Apr 13.
8
Cryo-EM single-particle structure refinement and map calculation using Servalcat.
Acta Crystallogr D Struct Biol. 2021 Oct 1;77(Pt 10):1282-1291. doi: 10.1107/S2059798321009475. Epub 2021 Sep 29.
9
Validation, analysis and annotation of cryo-EM structures.
Acta Crystallogr D Struct Biol. 2021 Sep 1;77(Pt 9):1142-1152. doi: 10.1107/S2059798321006069. Epub 2021 Aug 31.
10
Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome.
Nat Microbiol. 2021 Jul;6(7):960-970. doi: 10.1038/s41564-021-00928-6. Epub 2021 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验