Mostefaoui Okba, Iannuzzi Zoé, Lopez Diego, Mignot Emmanuel, Lipeme-Kouyi Gislain, Bayard Rémy, Massardier-Nageotte Valérie, Mourier Brice
INSA Lyon, CNRS, Ecole Centrale de Lyon, Universite Claude Bernard Lyon 1, LMFA, UMR5509, 69621, Villeurbanne France; Universite Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cédex, France.
Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69518, Vaulx-en-Velin, France; INSA Lyon, DEEP, UR7429, Villeurbanne 69621, France.
J Hazard Mater. 2025 Mar 15;486:137087. doi: 10.1016/j.jhazmat.2024.137087. Epub 2025 Jan 1.
The degradation of plastic waste is a major research challenge due to the adverse impacts of microplastic weathering on the environment and ecosystems. As a major source of plastic contamination comes from urban hydrosystems, studying MP degradation prior to their environmental dissemination is crucial. Through a combination of field sampling and laboratory experiments, this study provides a thorough statistical degradation comparison analysis between polyethylene in situ environmentally aged microplastics and artificially aged films. In the laboratory, pristine nonadditivated low-density polyethylene films were exposed to controlled ultraviolet (UV) radiation to simulate aging for various durations. Firstly, the study aims to assess the representativeness of controlled UV degradation to mimic urban in situ MPs. The second goal is to identify polyethylene (PE) degradation characteristics in various environmental matrices such as stormwater, suspended solids and sediment samples from a stormwater detention basin in a large urban area in France. Artificially aged plastics exhibit distinct alterations in physical and chemical properties, corresponding solely to the abiotic degradation observed in situ. In contrast, environmental particles display notable markers of biotic chemical degradation and hydrolysis. Moreover, the degradation environment varies significantly: it is predominantly abiotic for MPs collected in stormwater samples, while it is largely biotic for MPs collected in sediment and suspended solid samples. Besides, MPs from stormwater and suspended solid samples show a higher degree of hydrolysis degradation. Finally, additional comparisons with common consumer materials, before and after use, show almost no signs of notable degradation compared to the environmentally and artificially aged materials considered in this study.
由于微塑料风化对环境和生态系统的不利影响,塑料垃圾的降解是一项重大研究挑战。由于城市水文系统是塑料污染的主要来源,在微塑料进入环境之前研究其降解情况至关重要。通过现场采样和实验室实验相结合的方式,本研究对聚乙烯原位环境老化微塑料和人工老化薄膜进行了全面的统计降解比较分析。在实验室中,将原始的无添加剂低密度聚乙烯薄膜暴露于可控的紫外线辐射下,模拟不同时长的老化过程。首先,该研究旨在评估可控紫外线降解模拟城市原位微塑料的代表性。第二个目标是确定聚乙烯(PE)在各种环境基质中的降解特性,如法国一个大城市雨水滞留池的雨水、悬浮固体和沉积物样本。人工老化的塑料在物理和化学性质上表现出明显变化,仅对应于原位观察到的非生物降解。相比之下,环境颗粒显示出生物化学降解和水解的显著特征。此外,降解环境差异显著:雨水样本中收集的微塑料主要经历非生物降解,而沉积物和悬浮固体样本中收集的微塑料主要经历生物降解。此外,雨水和悬浮固体样本中的微塑料显示出更高程度的水解降解。最后,与常见消费材料使用前后的额外比较表明,与本研究中考虑的环境老化和人工老化材料相比,几乎没有明显降解的迹象。