Suppr超能文献

介绍并验证用于肝内胆管癌患者临床管理的多相循证决策矩阵(MedMax)。

Introducing and Validating the Multiphasic Evidential Decision-Making Matrix (MedMax) for Clinical Management in Patients with Intrahepatic Cholangiocarcinoma.

作者信息

Ramouz Ali, Adeliansedehi Ali, Khajeh Elias, März Keno, Michael Dominik, Wagner Martin, Müller-Stich Beat Peter, Mehrabi Arianeb, Majlesara Ali

机构信息

Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany.

National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.

出版信息

Cancers (Basel). 2024 Dec 27;17(1):52. doi: 10.3390/cancers17010052.

Abstract

Despite the significant advancements of liver surgery in the last few decades, the survival rate of patients with liver and pancreatic cancers has improved by only 10% in 30 years. Precision medicine offers a patient-centered approach, which, when combined with machine learning, could enhance decision making and treatment outcomes in surgical management of ihCC. This study aims to develop a decision support model to optimize treatment strategies for patients with ihCC, a prevalent primary liver cancer. The decision support model, named MedMax, was developed using three data sources: studies retrieved through a systematic literature review, expert opinions from HPB surgeons, and data from ihCC patients treated at Heidelberg University Hospital. Expert opinions were collected via surveys, with factors rated on a Likert scale, while patient data were used to validate the model's accuracy. The model is structured into four decision-making phases, assessing diagnosis, treatment modality, surgical approach, and prognosis. Prospectively, 44 patients with ihCC were included for internal primary validation of the model. MedMax could predict the appropriate treatment considering the resectability of the lesions in 100% of patients. Also, MedMax could predict a decent surgical approach in 77% of the patients. The model proved effective in making decisions regarding surgery and patient management, demonstrating its potential as a clinical decision support tool. MedMax offers a transparent, personalized approach to decision making in HPB surgery, particularly for ihCC patients. Initial results show high accuracy in treatment selection, and the model's flexibility allows for future expansion to other liver tumors and HPB surgeries. Further validation with larger patient cohorts is required to enhance its clinical utility.

摘要

尽管在过去几十年里肝脏手术取得了重大进展,但肝癌和胰腺癌患者的生存率在30年里仅提高了10%。精准医学提供了一种以患者为中心的方法,当与机器学习相结合时,可以改善肝内胆管癌(ihCC)手术管理中的决策制定和治疗结果。本研究旨在开发一种决策支持模型,以优化ihCC(一种常见的原发性肝癌)患者的治疗策略。名为MedMax的决策支持模型是利用三个数据源开发的:通过系统文献综述检索到的研究、肝脏胰胆外科医生的专家意见以及海德堡大学医院治疗的ihCC患者的数据。专家意见通过调查收集,各项因素采用李克特量表评分,而患者数据则用于验证模型的准确性。该模型分为四个决策阶段,评估诊断、治疗方式、手术方法和预后。前瞻性地纳入了44例ihCC患者进行模型的内部初步验证。MedMax能够在100%的患者中根据病变的可切除性预测合适的治疗方法。此外,MedMax能够在77%的患者中预测合适的手术方法。该模型在手术决策和患者管理方面被证明是有效的,显示出其作为临床决策支持工具的潜力。MedMax为肝脏胰胆外科手术中的决策制定提供了一种透明、个性化的方法,特别是对于ihCC患者。初步结果显示在治疗选择方面具有很高的准确性,并且该模型的灵活性允许未来扩展到其他肝脏肿瘤和肝脏胰胆外科手术。需要用更大的患者队列进行进一步验证,以提高其临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec6/11718823/faaadbda44fe/cancers-17-00052-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验