Suppr超能文献

美国颗粒物(PM)和臭氧(O)温度敏感性的区域特定趋势。

Regional-specific trends of PM and O temperature sensitivity in the United States.

作者信息

Yin Lifei, Bai Bin, Zhang Bingqing, Zhu Qiao, Di Qian, Requia Weeberb J, Schwartz Joel D, Shi Liuhua, Liu Pengfei

机构信息

School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA.

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA.

出版信息

NPJ Clim Atmos Sci. 2025;8(1):12. doi: 10.1038/s41612-024-00862-4. Epub 2025 Jan 10.

Abstract

Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM) and ozone (O) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning. Our findings demonstrate that in the eastern US, stringent emission control strategies have significantly reduced the positive responses of PM and O to summer temperature, thereby lowering the population exposure associated with warming-induced air quality deterioration. In contrast, PM in the western US became more sensitive to temperature, highlighting the urgent need to manage and mitigate the impact of worsening wildfires. Our results have important implications for air quality management and risk assessments of future climate change.

摘要

气候变化对公众健康构成直接和间接威胁,包括加剧空气污染。然而,在美国,气温上升对空气质量的影响仍高度不确定,尤其是在人为排放迅速减少的情况下。在此,我们利用机器学习生成的高分辨率数据集,研究了美国本土夏季温度异常对地表细颗粒物(PM)和臭氧(O)的敏感性及其年代际变化。我们的研究结果表明,在美国东部,严格的排放控制策略显著降低了PM和O对夏季温度的正向响应,从而降低了与变暖导致的空气质量恶化相关的人群暴露风险。相比之下,美国西部的PM对温度变得更加敏感,凸显了管理和减轻日益严重的野火影响的迫切需要。我们的结果对空气质量管理和未来气候变化的风险评估具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e05/11717706/aa110112e8b2/41612_2024_862_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验