Suppr超能文献

凝聚物组成的分子决定因素。

Molecular determinants of condensate composition.

作者信息

Holehouse Alex S, Alberti Simon

机构信息

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.

Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.

出版信息

Mol Cell. 2025 Jan 16;85(2):290-308. doi: 10.1016/j.molcel.2024.12.021.

Abstract

Cells use membraneless compartments to organize their interiors, and recent research has begun to uncover the molecular principles underlying their assembly. Here, we explore how site-specific and chemically specific interactions shape the properties and functions of condensates. Site-specific recruitment involves precise interactions at specific sites driven by partially or fully structured interfaces. In contrast, chemically specific recruitment is driven by complementary chemical interactions without the requirement for a persistent bound-state structure. We propose that site-specific and chemically specific interactions work together to determine the composition of condensates, facilitate biochemical reactions, and regulate enzymatic activities linked to metabolism, signaling, and gene expression. Characterizing the composition of condensates requires novel experimental and computational tools to identify and manipulate the molecular determinants guiding condensate recruitment. Advancing this research will deepen our understanding of how condensates regulate cellular functions, providing valuable insights into cellular physiology and organization.

摘要

细胞利用无膜区室来组织其内部结构,最近的研究已开始揭示其组装背后的分子原理。在这里,我们探讨位点特异性和化学特异性相互作用如何塑造凝聚物的性质和功能。位点特异性招募涉及由部分或完全结构化界面驱动的在特定位点的精确相互作用。相比之下,化学特异性招募是由互补的化学相互作用驱动的,而不需要持久的结合态结构。我们提出,位点特异性和化学特异性相互作用共同作用,以确定凝聚物的组成,促进生化反应,并调节与代谢、信号传导和基因表达相关的酶活性。表征凝聚物的组成需要新颖的实验和计算工具,以识别和操纵指导凝聚物招募的分子决定因素。推进这项研究将加深我们对凝聚物如何调节细胞功能的理解,为细胞生理学和组织提供有价值的见解。

相似文献

1
Molecular determinants of condensate composition.
Mol Cell. 2025 Jan 16;85(2):290-308. doi: 10.1016/j.molcel.2024.12.021.
2
Functional specificity in biomolecular condensates revealed by genetic complementation.
Nat Rev Genet. 2025 Apr;26(4):279-290. doi: 10.1038/s41576-024-00780-4. Epub 2024 Oct 21.
3
Structured protein domains enter the spotlight: modulators of biomolecular condensate form and function.
Trends Biochem Sci. 2025 Mar;50(3):206-223. doi: 10.1016/j.tibs.2024.12.008. Epub 2025 Jan 17.
4
Transcription regulation by biomolecular condensates.
Nat Rev Mol Cell Biol. 2025 Mar;26(3):213-236. doi: 10.1038/s41580-024-00789-x. Epub 2024 Nov 8.
5
Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets.
Signal Transduct Target Ther. 2025 Jan 6;10(1):4. doi: 10.1038/s41392-024-02070-1.
6
Biomolecular condensates: A new lens on cancer biology.
Biochim Biophys Acta Rev Cancer. 2025 Feb;1880(1):189245. doi: 10.1016/j.bbcan.2024.189245. Epub 2024 Dec 13.
8
Higher-order organization of biomolecular condensates.
Open Biol. 2021 Jun;11(6):210137. doi: 10.1098/rsob.210137. Epub 2021 Jun 16.
9
Biomolecular Condensates in Contact with Membranes.
Annu Rev Biophys. 2024 Jul;53(1):319-341. doi: 10.1146/annurev-biophys-030722-121518. Epub 2024 Jun 28.
10
Protein condensates in the the secretory pathway: Unraveling biophysical interactions and function.
Biophys J. 2024 Jun 18;123(12):1531-1541. doi: 10.1016/j.bpj.2024.04.031. Epub 2024 May 2.

引用本文的文献

1
Mutual Antagonism Between PRC1 Condensates and SWI/SNF in Chromatin Regulation.
bioRxiv. 2025 Aug 26:2025.08.25.672128. doi: 10.1101/2025.08.25.672128.
2
Kinase signaling cascades: an updated mechanistic landscape.
Chem Sci. 2025 Aug 19. doi: 10.1039/d5sc04657b.
3
Biomolecular condensates in plant immunity.
Cell Host Microbe. 2025 Aug 13;33(8):1276-1290. doi: 10.1016/j.chom.2025.06.014.
4
Prediction of Small-Molecule Partitioning into Biomolecular Condensates from Simulation.
JACS Au. 2025 Jul 3;5(7):3125-3139. doi: 10.1021/jacsau.5c00291. eCollection 2025 Jul 28.
5
Rational Modulation of Liquid-Liquid Phase Separation Offers Novel Ways to Combat Tauopathies.
Int J Mol Sci. 2025 Jul 12;26(14):6709. doi: 10.3390/ijms26146709.
6
Fluorescence-activated particle sorting for condensate purification.
Nat Protoc. 2025 Jul 18. doi: 10.1038/s41596-025-01216-x.
7
RNA polymerase II transcription compartments - from factories to condensates.
Nat Rev Genet. 2025 Jun 19. doi: 10.1038/s41576-025-00859-6.
9
Nanometer condensate organization in live cells derived from partitioning measurements.
bioRxiv. 2025 Feb 27:2025.02.26.640428. doi: 10.1101/2025.02.26.640428.
10
How a disordered linker in the Polycomb protein Polyhomeotic tunes phase separation and oligomerization.
bioRxiv. 2025 Feb 26:2023.10.26.564264. doi: 10.1101/2023.10.26.564264.

本文引用的文献

1
Stereochemistry in the disorder-order continuum of protein interactions.
Nature. 2024 Dec;636(8043):762-768. doi: 10.1038/s41586-024-08271-6. Epub 2024 Nov 27.
2
p14 forms meso-scale assemblies upon phase separation with NPM1.
Nat Commun. 2024 Nov 11;15(1):9531. doi: 10.1038/s41467-024-53904-z.
3
Surviving the heat: the role of macromolecular assemblies in promoting cellular shutdown.
Trends Biochem Sci. 2025 Jan;50(1):18-32. doi: 10.1016/j.tibs.2024.09.008. Epub 2024 Oct 29.
4
Sequence-specific interactions determine viscoelasticity and aging dynamics of protein condensates.
Nat Phys. 2024 Sep;20(9):1482-1491. doi: 10.1038/s41567-024-02558-1. Epub 2024 Jul 2.
5
RNA-driven phase transitions in biomolecular condensates.
Mol Cell. 2024 Oct 3;84(19):3692-3705. doi: 10.1016/j.molcel.2024.09.005.
6
G3BP isoforms differentially affect stress granule assembly and gene expression during cellular stress.
Mol Biol Cell. 2024 Nov 1;35(11):ar140. doi: 10.1091/mbc.E24-02-0062. Epub 2024 Oct 2.
7
Biomolecular Condensates are Characterized by Interphase Electric Potentials.
J Am Chem Soc. 2024 Oct 16;146(41):28268-28281. doi: 10.1021/jacs.4c08946. Epub 2024 Oct 2.
8
Unlocking the electrochemical functions of biomolecular condensates.
Nat Chem Biol. 2024 Nov;20(11):1420-1433. doi: 10.1038/s41589-024-01717-y. Epub 2024 Sep 26.
9
Small-molecule properties define partitioning into biomolecular condensates.
Nat Chem. 2024 Nov;16(11):1794-1802. doi: 10.1038/s41557-024-01630-w. Epub 2024 Sep 13.
10
Biomolecular condensates regulate cellular electrochemical equilibria.
Cell. 2024 Oct 17;187(21):5951-5966.e18. doi: 10.1016/j.cell.2024.08.018. Epub 2024 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验