Tyagi Gauri, Sengupta Shinjinee
Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, 201313 Noida, India.
Biophys Rev. 2024 Sep 30;16(6):737-751. doi: 10.1007/s12551-024-01232-3. eCollection 2024 Dec.
Amyloid fibrils, historically stigmatized due to their association with diseases like Alzheimer's and Parkinson's, are now recognized as a distinct class of functional proteins with extraordinary potential. These highly ordered, cross-β-sheet protein aggregates are found across all domains of life, playing crucial physiological roles. In bacteria, functional amyloids like curli fibers are essential for surface adhesion, biofilm formation, and viral DNA packaging. Fungal prions exploit amyloid conformations to regulate translation, metabolism, and virulence, while mammalian amyloids are integral to melanin synthesis, hormone storage, and antimicrobial defense. The stability and hydrophobic nature of amyloid scaffolds underpin these diverse biological functions. Beyond their natural roles, amyloid fibrils offer unique capabilities in biomedicine, nanotechnology, and materials science. Their exceptional mechanical strength and biocompatibility make them ideal for controlled drug delivery, tissue engineering scaffolds, and enzyme immobilization. The intrinsic fluorescence and optical properties of certain amyloids open up innovative applications in biosensors, molecular probes, and optoelectronic devices. Furthermore, amyloid fibrils can template metal nanowires, enhance conducting materials, and form nanocomposites by integrating with polymers. This newfound appreciation for the functional diversity of amyloids has ignited intense research efforts to elucidate their molecular mechanisms, stability, and tunable properties. By unraveling the structural intricacies of functional amyloids, researchers aim to harness their remarkable attributes for groundbreaking biomedical therapies, advanced nanomaterials, and sustainable biotechnological innovations. This review explores the transformative journey of amyloids from pathological entities to biotechnological marvels, highlighting their vast potential across agriculture, environmental remediation, and industrial processes.
淀粉样纤维长期以来因与阿尔茨海默病和帕金森病等疾病相关而被视为有问题,但现在被认为是一类具有非凡潜力的独特功能蛋白。这些高度有序的交叉β-折叠蛋白聚集体存在于所有生命领域,发挥着关键的生理作用。在细菌中,功能性淀粉样蛋白如卷曲纤维对于表面粘附、生物膜形成和病毒DNA包装至关重要。真菌朊病毒利用淀粉样构象来调节翻译、代谢和毒力,而哺乳动物淀粉样蛋白则是黑色素合成、激素储存和抗菌防御所必需的。淀粉样支架的稳定性和疏水性是这些多样生物学功能的基础。除了其天然作用外,淀粉样纤维在生物医学、纳米技术和材料科学中还具有独特能力。它们非凡的机械强度和生物相容性使其成为控释药物递送、组织工程支架和酶固定化的理想选择。某些淀粉样蛋白的固有荧光和光学特性为生物传感器、分子探针和光电器件开辟了创新应用。此外,淀粉样纤维可以为金属纳米线提供模板、增强导电材料,并通过与聚合物整合形成纳米复合材料。对淀粉样蛋白功能多样性的这种新认识引发了深入的研究努力,以阐明其分子机制、稳定性和可调性质。通过揭示功能性淀粉样蛋白的结构复杂性,研究人员旨在利用其卓越特性实现突破性的生物医学疗法、先进的纳米材料和可持续的生物技术创新。本综述探讨了淀粉样蛋白从病理实体到生物技术奇迹的变革之旅,突出了它们在农业、环境修复和工业过程中的巨大潜力。