Suppr超能文献

揭示淀粉样纤维的多面潜力:从致病谜团到生物技术奇迹。

Unveiling the multifaceted potential of amyloid fibrils: from pathogenic myths to biotechnological marvels.

作者信息

Tyagi Gauri, Sengupta Shinjinee

机构信息

Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, 201313 Noida, India.

出版信息

Biophys Rev. 2024 Sep 30;16(6):737-751. doi: 10.1007/s12551-024-01232-3. eCollection 2024 Dec.

Abstract

Amyloid fibrils, historically stigmatized due to their association with diseases like Alzheimer's and Parkinson's, are now recognized as a distinct class of functional proteins with extraordinary potential. These highly ordered, cross-β-sheet protein aggregates are found across all domains of life, playing crucial physiological roles. In bacteria, functional amyloids like curli fibers are essential for surface adhesion, biofilm formation, and viral DNA packaging. Fungal prions exploit amyloid conformations to regulate translation, metabolism, and virulence, while mammalian amyloids are integral to melanin synthesis, hormone storage, and antimicrobial defense. The stability and hydrophobic nature of amyloid scaffolds underpin these diverse biological functions. Beyond their natural roles, amyloid fibrils offer unique capabilities in biomedicine, nanotechnology, and materials science. Their exceptional mechanical strength and biocompatibility make them ideal for controlled drug delivery, tissue engineering scaffolds, and enzyme immobilization. The intrinsic fluorescence and optical properties of certain amyloids open up innovative applications in biosensors, molecular probes, and optoelectronic devices. Furthermore, amyloid fibrils can template metal nanowires, enhance conducting materials, and form nanocomposites by integrating with polymers. This newfound appreciation for the functional diversity of amyloids has ignited intense research efforts to elucidate their molecular mechanisms, stability, and tunable properties. By unraveling the structural intricacies of functional amyloids, researchers aim to harness their remarkable attributes for groundbreaking biomedical therapies, advanced nanomaterials, and sustainable biotechnological innovations. This review explores the transformative journey of amyloids from pathological entities to biotechnological marvels, highlighting their vast potential across agriculture, environmental remediation, and industrial processes.

摘要

淀粉样纤维长期以来因与阿尔茨海默病和帕金森病等疾病相关而被视为有问题,但现在被认为是一类具有非凡潜力的独特功能蛋白。这些高度有序的交叉β-折叠蛋白聚集体存在于所有生命领域,发挥着关键的生理作用。在细菌中,功能性淀粉样蛋白如卷曲纤维对于表面粘附、生物膜形成和病毒DNA包装至关重要。真菌朊病毒利用淀粉样构象来调节翻译、代谢和毒力,而哺乳动物淀粉样蛋白则是黑色素合成、激素储存和抗菌防御所必需的。淀粉样支架的稳定性和疏水性是这些多样生物学功能的基础。除了其天然作用外,淀粉样纤维在生物医学、纳米技术和材料科学中还具有独特能力。它们非凡的机械强度和生物相容性使其成为控释药物递送、组织工程支架和酶固定化的理想选择。某些淀粉样蛋白的固有荧光和光学特性为生物传感器、分子探针和光电器件开辟了创新应用。此外,淀粉样纤维可以为金属纳米线提供模板、增强导电材料,并通过与聚合物整合形成纳米复合材料。对淀粉样蛋白功能多样性的这种新认识引发了深入的研究努力,以阐明其分子机制、稳定性和可调性质。通过揭示功能性淀粉样蛋白的结构复杂性,研究人员旨在利用其卓越特性实现突破性的生物医学疗法、先进的纳米材料和可持续的生物技术创新。本综述探讨了淀粉样蛋白从病理实体到生物技术奇迹的变革之旅,突出了它们在农业、环境修复和工业过程中的巨大潜力。

相似文献

1
Unveiling the multifaceted potential of amyloid fibrils: from pathogenic myths to biotechnological marvels.
Biophys Rev. 2024 Sep 30;16(6):737-751. doi: 10.1007/s12551-024-01232-3. eCollection 2024 Dec.
2
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
6
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.
JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843.
7
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.
J Psychiatr Ment Health Nurs. 2024 Aug;31(4):681-698. doi: 10.1111/jpm.13023. Epub 2024 Jan 17.
10
Nucleic Acid Nanocapsules as a New Platform to Deliver Therapeutic Nucleic Acids for Gene Regulation.
Acc Chem Res. 2025 Jul 1;58(13):1951-1962. doi: 10.1021/acs.accounts.5c00126. Epub 2025 Jun 9.

引用本文的文献

1
: the IUPAB journal promoting biophysics on an international stage.
Biophys Rev. 2025 Jan 3;16(6):655-659. doi: 10.1007/s12551-024-01266-7. eCollection 2024 Dec.

本文引用的文献

1
Integrative catalytic pairs for efficient multi-intermediate catalysis.
Nat Nanotechnol. 2024 Oct;19(10):1442-1451. doi: 10.1038/s41565-024-01716-z. Epub 2024 Aug 5.
2
Single-site iron-anchored amyloid hydrogels as catalytic platforms for alcohol detoxification.
Nat Nanotechnol. 2024 Aug;19(8):1168-1177. doi: 10.1038/s41565-024-01657-7. Epub 2024 May 13.
3
Functional Amyloids: The Biomaterials of Tomorrow?
Adv Mater. 2024 May;36(18):e2312823. doi: 10.1002/adma.202312823. Epub 2024 Feb 2.
4
From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics.
Biomacromolecules. 2024 Jan 8;25(1):5-23. doi: 10.1021/acs.biomac.3c01129. Epub 2023 Dec 26.
5
p53 amyloid pathology is correlated with higher cancer grade irrespective of the mutant or wild-type form.
J Cell Sci. 2023 Sep 1;136(17). doi: 10.1242/jcs.261017. Epub 2023 Sep 8.
6
Spider Silk Protein Forms Amyloid-Like Nanofibrils through a Non-Nucleation-Dependent Polymerization Mechanism.
Small. 2023 Nov;19(46):e2304031. doi: 10.1002/smll.202304031. Epub 2023 Jul 16.
7
Application of Amyloid-Based Hybrid Membranes in Drug Delivery.
Polymers (Basel). 2023 Mar 14;15(6):1444. doi: 10.3390/polym15061444.
8
Fibrillation modification to improve the viscosity, emulsifying, and foaming properties of rice protein.
Food Res Int. 2023 Apr;166:112609. doi: 10.1016/j.foodres.2023.112609. Epub 2023 Feb 17.
9
Amyloid fibril-based thixotropic hydrogels for modeling of tumor spheroids in vitro.
Biomaterials. 2023 Apr;295:122032. doi: 10.1016/j.biomaterials.2023.122032. Epub 2023 Feb 4.
10
Amyloid Fibrils Enhance the Topical Bio-Adhesivity of Liquid Crystalline Mesophase-Based Drug Formulations.
Adv Healthc Mater. 2023 May;12(12):e2202720. doi: 10.1002/adhm.202202720. Epub 2023 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验