Suppr超能文献

用于近红外成像的硅罗丹明1,2 - 二氧杂环丁烷化学发光体

A silicon rhodamine 1,2-dioxetane chemiluminophore for near-infrared imaging.

作者信息

Osman Rokia, Haris Uroob, Cabello Maidileyvis C, Mason Ralph P, Lippert Alexander R

机构信息

Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.

Prognostic Imaging Research Laboratory, Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390-9058, USA.

出版信息

Org Biomol Chem. 2025 Feb 19;23(8):1846-1850. doi: 10.1039/d4ob02002b.

Abstract

Near-infrared (NIR) chemiluminescent probes have attracted increasing attention in recent years due to their attractive properties for imaging. Herein, we developed a NIR chemiluminophore silicon rhodamine (SiRCL-1) based on the intramolecular energy transfer process from excited state benzoate to a silicon rhodamine emitter under aqueous conditions. SiRCL-1 exhibited dual emission peaks at 540 nm and 680 nm with a high signal penetration through tissue at 680 nm (>30 mm) and long-lasting luminescence (>50 min), demonstrating its significance as a chemiluminescence scaffold for biological application.

摘要

近年来,近红外(NIR)化学发光探针因其在成像方面的诱人特性而受到越来越多的关注。在此,我们基于分子内从激发态苯甲酸酯到硅罗丹明发射体在水性条件下的能量转移过程,开发了一种近红外化学发光团硅罗丹明(SiRCL-1)。SiRCL-1在540 nm和680 nm处表现出双重发射峰,在680 nm处具有高信号组织穿透性(>30 mm)和持久发光(>50分钟),证明了其作为生物应用化学发光支架的重要性。

相似文献

1
A silicon rhodamine 1,2-dioxetane chemiluminophore for near-infrared imaging.
Org Biomol Chem. 2025 Feb 19;23(8):1846-1850. doi: 10.1039/d4ob02002b.
2
Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes.
Angew Chem Int Ed Engl. 2012 Jul 27;51(31):7634-6. doi: 10.1002/anie.201202264. Epub 2012 Jun 5.
3
Silicon Rhodamine-Based Near-Infrared Fluorescent Probe for γ-Glutamyltransferase.
Bioconjug Chem. 2018 Feb 21;29(2):241-244. doi: 10.1021/acs.bioconjchem.7b00776. Epub 2018 Jan 19.
4
Asymmetric Si-rhodamine scaffolds: rational design of pH-durable protease-activated NIR probes in vivo.
Chem Commun (Camb). 2020 Feb 25;56(16):2455-2458. doi: 10.1039/c9cc09666c.
5
Near-Infrared Phosphorus-Substituted Rhodamine with Emission Wavelength above 700 nm for Bioimaging.
Chemistry. 2015 Nov 16;21(47):16754-8. doi: 10.1002/chem.201502921. Epub 2015 Sep 30.
6
Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes.
J Am Chem Soc. 2015 Apr 15;137(14):4759-65. doi: 10.1021/jacs.5b00246. Epub 2015 Apr 6.
7
Analogs of Changsha near-infrared dyes with large Stokes Shifts for bioimaging.
Biomaterials. 2013 Dec;34(37):9566-71. doi: 10.1016/j.biomaterials.2013.08.081. Epub 2013 Sep 17.
8
SiRA: A Silicon Rhodamine-Binding Aptamer for Live-Cell Super-Resolution RNA Imaging.
J Am Chem Soc. 2019 May 8;141(18):7562-7571. doi: 10.1021/jacs.9b02697. Epub 2019 Apr 23.
9
Design and synthesis of a small molecular NIR-II chemiluminescence probe for in vivoactivated HS imaging.
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2205186120. doi: 10.1073/pnas.2205186120. Epub 2023 Feb 14.
10
Molecular Chemiluminescent Probes with a Very Long Near-Infrared Emission Wavelength for in Vivo Imaging.
Angew Chem Int Ed Engl. 2021 Feb 19;60(8):3999-4003. doi: 10.1002/anie.202013531. Epub 2020 Dec 21.

本文引用的文献

1
Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes.
Chem Rev. 2024 Aug 28;124(16):9225-9375. doi: 10.1021/acs.chemrev.3c00892. Epub 2024 Aug 13.
2
Leveraging Long-Distance Singlet-Oxygen Transfer for Bienzyme-Locked Afterglow Imaging of Intratumoral Granule Enzymes.
J Am Chem Soc. 2024 Jun 26;146(25):17393-17403. doi: 10.1021/jacs.4c05012. Epub 2024 Jun 11.
3
Rechargeable Afterglow Nanotorches for In Vivo Tracing of Cell-Based Microrobots.
Angew Chem Int Ed Engl. 2024 Apr 24;63(18):e202400658. doi: 10.1002/anie.202400658. Epub 2024 Mar 25.
4
A mitochondria-targeted chemiluminescent probe for detection of hydrogen sulfide in cancer cells, human serum and .
RSC Chem Biol. 2023 Jul 18;4(9):675-684. doi: 10.1039/d3cb00070b. eCollection 2023 Aug 30.
5
Chemiluminescent duplex analysis using phenoxy-1,2-dioxetane luminophores with color modulation.
Chem Sci. 2023 Jun 1;14(25):6953-6962. doi: 10.1039/d3sc02386a. eCollection 2023 Jun 28.
6
Oxygen-Sensing Chemiluminescent Iridium(III) 1,2-Dioxetanes: Unusual Coordination and Activity.
Anal Sens. 2023 Jan;3(1). doi: 10.1002/anse.202200085. Epub 2022 Oct 25.
7
Exploring the Structural Space of Chemiluminescent 1,2-Dioxetanes.
ACS Sens. 2023 Jan 27;8(1):3-11. doi: 10.1021/acssensors.2c02371. Epub 2022 Dec 27.
8
Selective detection of carboxylesterase 2 activity in cancer cells using an activity-based chemiluminescent probe.
Chem Commun (Camb). 2022 Sep 29;58(78):10929-10932. doi: 10.1039/d2cc03309g.
9
Energy Transfer Chemiluminescent Spiroadamantane 1,2-Dioxetane Probes for Bioanalyte Detection and Imaging.
Angew Chem Int Ed Engl. 2022 Oct 17;61(42):e202210057. doi: 10.1002/anie.202210057. Epub 2022 Sep 8.
10
Visible Light Chemical Micropatterning Using a Digital Light Processing Fluorescence Microscope.
ACS Cent Sci. 2022 Jan 26;8(1):67-76. doi: 10.1021/acscentsci.1c01234. Epub 2021 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验