Suppr超能文献

运用机器学习技术预测中国成年癫痫患者丙戊酸的谷浓度

Prediction Trough Concentrations of Valproic Acid Among Chinese Adult Patients with Epilepsy Using Machine Learning Techniques.

作者信息

Yao Nannan, Zhao Qiongyue, Cao Ying, Gu Dongshi, Zhang Ning

机构信息

Department of Pharmacy, Jinshan Hospital Affiliated to Fudan University, Shanghai, China.

出版信息

Pharm Res. 2025 Jan;42(1):79-91. doi: 10.1007/s11095-025-03817-3. Epub 2025 Jan 22.

Abstract

OBJECTIVE

This study aimed to establish an optimal model based on machine learning (ML) to predict Valproic acid (VPA) trough concentrations in Chinese adult epilepsy patients.

METHODS

A single-center retrospective study was carried out at the Jinshan Hospital affiliated with Fudan University from January 2022 to December 2023. A total of 102 VPA trough concentrations were split into a derivation cohort and a validation cohort at a ratio of 8:2. Thirteen ML algorithms were developed using 27 variables in the derivation cohort and were filtered by the lowest mean absolute error (MAE) value. In addition, feature selection was applied to optimize the model.

RESULTS

Ultimately, the extra tree algorithm was chosen to establish the personalized VPA trough concentration prediction model due to its best performance (MAE = 13.08). The SHapley Additive exPlanations (SHAP) plots were used to visualize and rank the importance of features, providing insights into how each feature influences the model's predictions. After feature selection, we found that the model with the top 9 variables [including daily dose, last dose, uric acid (UA), platelet (PLT), combination, gender, weight, albumin (ALB), aspartate aminotransferase (AST)] outperformed the model with 27 variables, with MAE of 6.82, RMSE of 9.62, R value of 0.720, relative accuracy (±20%) of 61.90%, and absolute accuracy (±20 mg/L) of 90.48%.

CONCLUSION

In conclusion, the trough concentration prediction model for VPA in Chinese adult epileptic patients based on the extra tree algorithm demonstrated strong predictive ability which is valuable for clinicians in medication guidance.

摘要

目的

本研究旨在建立一种基于机器学习(ML)的优化模型,以预测中国成年癫痫患者的丙戊酸(VPA)谷浓度。

方法

于2022年1月至2023年12月在复旦大学附属金山医院开展一项单中心回顾性研究。将总共102个VPA谷浓度以8:2的比例分为推导队列和验证队列。在推导队列中使用27个变量开发了13种ML算法,并通过最低平均绝对误差(MAE)值进行筛选。此外,应用特征选择来优化模型。

结果

最终,由于其最佳性能(MAE = 13.08),选择了额外树算法来建立个性化的VPA谷浓度预测模型。使用SHapley加法解释(SHAP)图来可视化并对特征的重要性进行排名,从而深入了解每个特征如何影响模型的预测。经过特征选择后,我们发现包含前9个变量[包括每日剂量、末次剂量、尿酸(UA)、血小板(PLT)、联合用药、性别、体重、白蛋白(ALB)、天冬氨酸转氨酶(AST)]的模型优于包含27个变量的模型,MAE为6.82,RMSE为9.62,R值为0.720,相对准确度(±20%)为61.90%,绝对准确度(±20 mg/L)为90.48%。

结论

总之,基于额外树算法的中国成年癫痫患者VPA谷浓度预测模型具有很强的预测能力,对临床医生进行用药指导具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验