Li Xiaochen, Guo Xiangyu, Wang Xinyue, Jiang Lingqi, Li Mingxin, Dai Xiaochuan, Hao Qun, Zhao Jingjing, Huang Yong, Sun Liqun
Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China.
Tsinghua University, School of Biomedical Engineering, Beijing, China.
J Biomed Opt. 2025 Jan;30(1):016003. doi: 10.1117/1.JBO.30.1.016003. Epub 2025 Jan 22.
Optical coherence tomography (OCT) is widely utilized to investigate brain activities and disorders in anesthetized or restrained rodents. However, anesthesia can alter several physiological parameters, leading to findings that might not fully represent the true physiological state. To advance the understanding of brain function in awake and freely moving animals, the development of wearable OCT probes is crucial.
We aim to address the challenge of insufficient depth of field (DOF) in wearable OCT probes for brain imaging in freely moving mice, ensuring high lateral resolution while capturing brain vasculature across varying heights.
We integrated diffractive optical elements (DOEs) capable of generating beams with an extended DOF into a wearable OCT probe. This design effectively overcomes the traditional trade-off between lateral resolution and DOF, enabling the capture of detailed angiographic images in a dynamic and uncontrolled environment.
The enhanced wearable OCT probe achieved a lateral resolution superior to within a axial range. This setup allowed for high-resolution optical coherence tomography angiography (OCTA) imaging with extended DOF, making it suitable for studying brain vasculature in freely moving mice.
The incorporation of DOEs into the wearable OCT probe represents a significant advancement in wearable biomedical imaging. This technology facilitates the acquisition of high-resolution angiographic images with an extended DOF, thus enhancing the ability to study brain function in awake and naturally behaving animals.
光学相干断层扫描(OCT)被广泛用于研究麻醉或受限啮齿动物的大脑活动和疾病。然而,麻醉会改变多个生理参数,导致研究结果可能无法完全代表真实的生理状态。为了加深对清醒且自由活动动物大脑功能的理解,可穿戴OCT探头的开发至关重要。
我们旨在解决可穿戴OCT探头在自由活动小鼠大脑成像中景深(DOF)不足的挑战,在捕捉不同高度的脑血管时确保高横向分辨率。
我们将能够产生具有扩展景深光束的衍射光学元件(DOE)集成到可穿戴OCT探头中。这种设计有效地克服了横向分辨率和景深之间的传统权衡,能够在动态且不受控制的环境中捕捉详细的血管造影图像。
增强型可穿戴OCT探头在轴向范围内实现了优于 的横向分辨率。这种设置允许进行具有扩展景深的高分辨率光学相干断层扫描血管造影(OCTA)成像,使其适用于研究自由活动小鼠的脑血管。
将DOE纳入可穿戴OCT探头代表了可穿戴生物医学成像的重大进展。这项技术有助于获取具有扩展景深的高分辨率血管造影图像,从而增强了研究清醒且自然行为动物大脑功能的能力。