Suppr超能文献

基于生理学的正则化能够训练用于生物学应用的通用微分方程系统。

Physiology-informed regularisation enables training of universal differential equation systems for biological applications.

作者信息

de Rooij Max, Erdős Balázs, van Riel Natal A W, O'Donovan Shauna D

机构信息

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.

Eindhoven Artificial Intelligence Systems Institute (EAISI), Eindhoven University of Technology, Eindhoven, Netherlands.

出版信息

PLoS Comput Biol. 2025 Jan 23;21(1):e1012198. doi: 10.1371/journal.pcbi.1012198. eCollection 2025 Jan.

Abstract

Systems biology tackles the challenge of understanding the high complexity in the internal regulation of homeostasis in the human body through mathematical modelling. These models can aid in the discovery of disease mechanisms and potential drug targets. However, on one hand the development and validation of knowledge-based mechanistic models is time-consuming and does not scale well with increasing features in medical data. On the other hand, data-driven approaches such as machine learning models require large volumes of data to produce generalisable models. The integration of neural networks and mechanistic models, forming universal differential equation (UDE) models, enables the automated learning of unknown model terms with less data than neural networks alone. Nevertheless, estimating parameters for these hybrid models remains difficult with sparse data and limited sampling durations that are common in biological applications. In this work, we propose the use of physiology-informed regularisation, penalising biologically implausible model behavior to guide the UDE towards more physiologically plausible regions of the solution space. In a simulation study we show that physiology-informed regularisation not only results in a more accurate forecasting of model behaviour, but also supports training with less data. We also applied this technique to learn a representation of the rate of glucose appearance in the glucose minimal model using meal response data measured in healthy people. In that case, the inclusion of regularisation reduces variability between UDE-embedded neural networks that were trained from different initial parameter guesses.

摘要

系统生物学通过数学建模应对理解人体内部稳态调节高度复杂性的挑战。这些模型有助于发现疾病机制和潜在药物靶点。然而,一方面,基于知识的机理模型的开发和验证耗时,且随着医学数据特征的增加扩展性不佳。另一方面,诸如机器学习模型等数据驱动方法需要大量数据来生成可推广的模型。神经网络与机理模型的整合,形成通用微分方程(UDE)模型,能够以比单独使用神经网络更少的数据自动学习未知模型项。尽管如此,对于这些混合模型,在生物应用中常见的稀疏数据和有限采样持续时间情况下,估计参数仍然困难。在这项工作中,我们提出使用生理学信息正则化,对生物学上不合理的模型行为进行惩罚,以引导UDE朝着解空间中更符合生理学的合理区域发展。在一项模拟研究中,我们表明生理学信息正则化不仅能更准确地预测模型行为,还支持用更少的数据进行训练。我们还应用此技术,利用在健康人身上测量的进餐反应数据,学习葡萄糖最小模型中葡萄糖出现率的表示。在那种情况下,加入正则化可减少从不同初始参数猜测训练的嵌入UDE的神经网络之间的变异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175f/11771921/f72d6a81d129/pcbi.1012198.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验