Suppr超能文献

揭示印度家庭层面发育迟缓的预测因素:一种使用国家家庭健康调查-5(NFHS-5)和卫星驱动数据的机器学习方法。

Unveiling predictive factors for household-level stunting in India: A machine learning approach using NFHS-5 and satellite-driven data.

作者信息

Arya Prashant Kumar, Sur Koyel, Kundu Tanushree, Dhote Siddharth, Singh Shailendra Kumar

机构信息

Institute for Human Development, Delhi, India; ICSSR Post-Doctoral Fellow, Central University of Jharkhand, Ranchi, India.

Geospatial Resource Mapping and Application Group, Punjab Remote Sensing Centre, Punjab, India.

出版信息

Nutrition. 2025 Apr;132:112674. doi: 10.1016/j.nut.2024.112674. Epub 2024 Dec 24.

Abstract

OBJECTIVES

Childhood stunting remains a significant public health issue in India, affecting approximately 35% of children under 5. Despite extensive research, existing prediction models often fail to incorporate diverse data sources and address the complex interplay of socioeconomic, demographic, and environmental factors. This study bridges this gap by employing machine learning methods to predict stunting at the household level, using data from the National Family Health Survey combined with satellite-driven datasets.

METHODS

We used four machine learning models-random forest regression, support vector machine regression, K-nearest neighbors regression, and regularized linear regression-to examine the impact of various factors on stunting. The random forest regression model demonstrated the highest predictive accuracy and robustness.

RESULTS

The proportion of households below the poverty line and the dependency ratio consistently predicted stunting across all models, underscoring the importance of economic status and household structure. Moreover, the educational level of the household head and environmental variables such as average temperature and leaf area index were significant contributors. Spatial analysis revealed significant geographic clustering of high-stunting districts, notably in central and eastern India, further emphasizing the role of regional socioeconomic and environmental factors. Notably, environmental variables like average temperature and leaf area index emerged as strong predictors of stunting, highlighting how regional climate and vegetation conditions shape nutritional outcomes.

CONCLUSIONS

These findings underline the importance of comprehensive interventions that not only address socioeconomic inequities but also consider environmental factors, such as climate and vegetation, to effectively combat childhood stunting in India.

摘要

目标

儿童发育迟缓在印度仍然是一个重大的公共卫生问题,影响着约35%的5岁以下儿童。尽管进行了广泛研究,但现有的预测模型往往未能纳入多种数据源,也未能解决社会经济、人口和环境因素之间复杂的相互作用。本研究通过运用机器学习方法,利用全国家庭健康调查的数据与卫星驱动的数据集相结合,在家庭层面预测发育迟缓,填补了这一空白。

方法

我们使用了四种机器学习模型——随机森林回归、支持向量机回归、K近邻回归和正则化线性回归——来研究各种因素对发育迟缓的影响。随机森林回归模型显示出最高的预测准确性和稳健性。

结果

在所有模型中,贫困线以下家庭的比例和抚养比始终能够预测发育迟缓情况,突出了经济状况和家庭结构的重要性。此外,户主的教育水平以及平均温度和叶面积指数等环境变量也是重要因素。空间分析显示发育迟缓高发地区存在显著的地理聚集现象,尤其是在印度中部和东部,进一步强调了区域社会经济和环境因素的作用。值得注意的是,平均温度和叶面积指数等环境变量成为发育迟缓的有力预测指标,凸显了区域气候和植被条件如何影响营养状况。

结论

这些发现强调了全面干预措施的重要性,这些措施不仅要解决社会经济不平等问题,还要考虑气候和植被等环境因素,以有效应对印度儿童发育迟缓问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验