de Groot T M, Sommerkamp A A, Thio Q C B S, Karhade A V, Groot O Q, Oosterhof J H F, Ijpma F F A, VAN Ooijen P M A, Ploegmakers J J W, Jutte P C, Schwab J H, Doornberg J N
Acta Orthop Belg. 2024 Sep;90(3):493-501. doi: 10.52628/90.3.12636.
Accurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan. To ensure global generalizability, the algorithm remains to be validated in Europe. We therefore asked: does the SORG-MLA for long-bone metastases accurately predict 90-day and 1-year survival in a European cohort? One-hundred seventy-four patients undergoing surgery for long-bone metastases between 1997-2019 were included at a tertiary referral Orthopaedic Oncology Center in the Netherlands. Model performance measures included discrimination, calibration, overall performance, and decision curve analysis. The SORG-MLA retained reasonable discriminative ability, showing an area under the curve of 0.73 for 90-day mortality and 0.77 for 1-year mortality. However, the calibration analysis demonstrated overestimation of European patients' 90- day mortality (calibration intercept -0.54, slope 0.60). For 1-year mortality (calibration intercept 0.01, slope 0.60) this was not the case. The Brier score predictions were lower than their respective null model (0.13 versus 0.14 for 90-day; 0.20 versus 0.25 for 1-year), suggesting good overall performance of the SORG-MLA for both timepoints. The SORG-MLA showed promise in predicting survival of patients with extremity metastatic disease. However, clinicians should keep in mind that due to differences in patient population, the model tends to underestimate survival in this Dutch cohort. The SORG model can be accessed freely at https://sorg-apps.shinyapps.io/extremitymetssurvival/.
准确预测长骨转移患者的生存期具有挑战性,但对于优化治疗至关重要。骨骼肿瘤研究组(SORG)的机器学习算法(MLA)此前已开发并在内部验证,用于预测90天和1年生存率。在美国和台湾进行的外部验证显示出了前景。为确保全球通用性,该算法仍有待在欧洲进行验证。因此,我们提出问题:用于长骨转移的SORG-MLA能否准确预测欧洲队列中患者的90天和1年生存率?1997年至2019年间在荷兰一家三级转诊骨科肿瘤中心接受长骨转移手术的174例患者被纳入研究。模型性能指标包括区分度、校准、整体性能和决策曲线分析。SORG-MLA保留了合理的区分能力,90天死亡率的曲线下面积为0.73,1年死亡率的曲线下面积为0.77。然而,校准分析表明欧洲患者的90天死亡率被高估(校准截距为-0.54,斜率为0.60)。对于1年死亡率(校准截距为0.01,斜率为0.60)则并非如此。Brier评分预测低于各自的空模型(90天为0.13对0.14;1年为0.20对0.25),表明SORG-MLA在两个时间点的整体性能良好。SORG-MLA在预测肢体转移性疾病患者的生存期方面显示出前景。然而,临床医生应牢记,由于患者群体的差异,该模型在这个荷兰队列中往往会低估生存期。可通过https://sorg-apps.shinyapps.io/extremitymetssurvival/免费访问SORG模型。