Suppr超能文献

一种使用国际疾病分类代码识别先天性心脏病(CHD)的广义机器学习模型。

A Generalized Machine Learning Model for Identifying Congenital Heart Defects (CHDs) Using ICD Codes.

作者信息

Shi Haoming, Book Wendy M, Ivey Lindsey C, Rodriguez Fred H, Raskind-Hood Cheryl, Downing Karrie F, Farr Sherry L, McCracken Courtney E, Leedom Vinita O, Haynes Susan E, Amouzou Sandra, Sameni Reza, Kamaleswaran Rishikesan

机构信息

Department of Biomedical Engineering, Georgia Institute Technology, Atlanta, Georgia, USA.

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

出版信息

Birth Defects Res. 2025 Feb;117(2):e2440. doi: 10.1002/bdr2.2440.

Abstract

BACKGROUND

International Classification of Diseases (ICD) codes utilized for congenital heart defect (CHD) case identification in datasets have substantial false-positive (FP) rates. Incorporating machine learning (ML) algorithms following case selection by ICD codes may improve the accuracy of CHD identification, enhancing surveillance efforts.

METHODS

Traditional ML methods were applied to four encounter-level datasets, 2010-2019, for 3334 patients with validated diagnoses and with at least one CHD ICD code identified. A 5-fold cross-validation approach was applied to the dataset to determine the set of overlapping important features best classifying CHD cases. Training and testing combinations were explored to determine the approach yielding the most accurate CHD classification.

RESULTS

CHD ICD positive predictive values (PPVs) by site ranged from 53.2% to 84.0%. The ML algorithm achieved a PPV of 95% (1273/1340) for the four-site dataset with a false-negative (FN) rate of 33% (639/1912) by choosing an operating point prioritizing PPV from the PPV-FN rate curve. XGBoost reduced 2105 Clinical Classification Software (CCS) features to 137 that identified those with true-positive (TP) CHD and false-positive FP classification.

CONCLUSION

Applying ML algorithms following case selection by CHD-related ICD codes improved the accuracy of identifying TP true-positive CHD cases.

摘要

背景

数据集中用于先天性心脏病(CHD)病例识别的国际疾病分类(ICD)编码有相当高的假阳性(FP)率。在通过ICD编码进行病例选择后纳入机器学习(ML)算法,可能会提高CHD识别的准确性,加强监测工作。

方法

将传统的ML方法应用于2010 - 2019年的四个就诊级数据集,这些数据集包含3334例经证实诊断且至少有一个CHD ICD编码被识别的患者。对数据集采用5折交叉验证方法,以确定能最佳分类CHD病例的重叠重要特征集。探索训练和测试组合,以确定产生最准确CHD分类的方法。

结果

按部位划分的CHD ICD阳性预测值(PPV)范围为53.2%至84.0%。通过从PPV - FN率曲线中选择优先考虑PPV的操作点,ML算法对四部位数据集实现了95%(1273/1340)的PPV,假阴性(FN)率为33%(639/1912)。XGBoost将2105个临床分类软件(CCS)特征减少到137个,这些特征可识别真正的阳性(TP)CHD和假阳性(FP)分类。

结论

在通过与CHD相关的ICD编码进行病例选择后应用ML算法,提高了识别真正阳性(TP)CHD病例的准确性。

相似文献

2
A machine learning model for predicting congenital heart defects from administrative data.
Birth Defects Res. 2023 Nov 1;115(18):1693-1707. doi: 10.1002/bdr2.2245. Epub 2023 Sep 8.
3
Positive Predictive Value of , and , Codes for Identification of Congenital Heart Defects.
J Am Heart Assoc. 2023 Aug 15;12(16):e030821. doi: 10.1161/JAHA.123.030821. Epub 2023 Aug 7.
4
How Well Do Codes Predict True Congenital Heart Defects? A Centers for Disease Control and Prevention-Based Multisite Validation Project.
J Am Heart Assoc. 2022 Aug 2;11(15):e024911. doi: 10.1161/JAHA.121.024911. Epub 2022 Jul 19.
8
Development of machine learning-based models to predict congenital heart disease: A matched case-control study.
Int J Med Inform. 2025 Mar;195:105741. doi: 10.1016/j.ijmedinf.2024.105741. Epub 2024 Dec 2.

本文引用的文献

1
Artificial Intelligence in Congenital Heart Disease: Current State and Prospects.
JACC Adv. 2022 Dec 14;1(5):100153. doi: 10.1016/j.jacadv.2022.100153. eCollection 2022 Dec.
2
Machine Learning Informed Diagnosis for Congenital Heart Disease in Large Claims Data Source.
JACC Adv. 2023 Dec 25;3(2):100801. doi: 10.1016/j.jacadv.2023.100801. eCollection 2024 Feb.
4
A machine learning model for predicting congenital heart defects from administrative data.
Birth Defects Res. 2023 Nov 1;115(18):1693-1707. doi: 10.1002/bdr2.2245. Epub 2023 Sep 8.
5
Positive Predictive Value of , and , Codes for Identification of Congenital Heart Defects.
J Am Heart Assoc. 2023 Aug 15;12(16):e030821. doi: 10.1161/JAHA.123.030821. Epub 2023 Aug 7.
6
Morbidity and Mortality in Adult Fontan Patients After Heart or Combined Heart-Liver Transplantation.
J Am Coll Cardiol. 2023 Jun 6;81(22):2161-2171. doi: 10.1016/j.jacc.2023.03.422.
7
Trends in Delayed Diagnosis of Critical Congenital Heart Defects in an Era of Enhanced Screening, 2004-2018.
J Pediatr. 2023 Jun;257:113366. doi: 10.1016/j.jpeds.2023.02.012. Epub 2023 Feb 28.
8
Health Care Usage Among Adolescents With Congenital Heart Defects at 5 Sites in the United States, 2011 to 2013.
J Am Heart Assoc. 2022 Sep 20;11(18):e026172. doi: 10.1161/JAHA.122.026172. Epub 2022 Sep 14.
9
How Well Do Codes Predict True Congenital Heart Defects? A Centers for Disease Control and Prevention-Based Multisite Validation Project.
J Am Heart Assoc. 2022 Aug 2;11(15):e024911. doi: 10.1161/JAHA.121.024911. Epub 2022 Jul 19.
10
Long-term outcomes of primary aortic valve repair for isolated congenital aortic stenosis in children.
J Thorac Cardiovasc Surg. 2022 Nov;164(5):1263-1274.e1. doi: 10.1016/j.jtcvs.2021.11.097. Epub 2022 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验