Suppr超能文献

通过APPFLx在异构计算环境中的生物医学研究中实现端到端安全联邦学习。

Enabling end-to-end secure federated learning in biomedical research on heterogeneous computing environments with APPFLx.

作者信息

Hoang Trung-Hieu, Fuhrman Jordan, Klarqvist Marcus, Li Miao, Chaturvedi Pranshu, Li Zilinghan, Kim Kibaek, Ryu Minseok, Chard Ryan, Huerta E A, Giger Maryellen, Madduri Ravi

机构信息

Department of Electrical and Computer Engineering and Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.

University of Chicago, Chicago, IL, USA.

出版信息

Comput Struct Biotechnol J. 2024 Dec 13;28:29-39. doi: 10.1016/j.csbj.2024.12.001. eCollection 2025.

Abstract

Facilitating large-scale, cross-institutional collaboration in biomedical machine learning (ML) projects requires a trustworthy and resilient federated learning (FL) environment to ensure that sensitive information such as protected health information is kept confidential. Specifically designed for this purpose, this work introduces APPFLx - a low-code, easy-to-use FL framework that enables easy setup, configuration, and running of FL experiments. APPFLx removes administrative boundaries of research organizations and healthcare systems while providing secure , functionality, and . Furthermore, it is completely agnostic to the underlying computational infrastructure of participating clients, allowing an instantaneous deployment of this framework into existing computing infrastructures. Experimentally, the utility of APPFLx is demonstrated in two case studies: (1) predicting participant age from electrocardiogram (ECG) waveforms, and (2) detecting COVID-19 disease from chest radiographs. Here, ML models were securely trained across heterogeneous computing resources, including a combination of on-premise high-performance computing and cloud computing facilities. By securely unlocking data from multiple sources for training without directly sharing it, these FL models enhance generalizability and performance compared to centralized training models while ensuring data remains protected. In conclusion, APPFLx demonstrated itself as an easy-to-use framework for accelerating biomedical studies across organizations and healthcare systems on large datasets while maintaining the protection of private medical data.

摘要

在生物医学机器学习(ML)项目中促进大规模、跨机构合作需要一个值得信赖且具有弹性的联邦学习(FL)环境,以确保诸如受保护的健康信息等敏感信息得到保密。为此专门设计,这项工作引入了APPFLx——一个低代码、易于使用的FL框架,可实现FL实验的轻松设置、配置和运行。APPFLx消除了研究组织和医疗系统的管理界限,同时提供安全的功能以及……此外,它完全不依赖于参与客户端的底层计算基础设施,允许将此框架即时部署到现有的计算基础设施中。通过实验,在两个案例研究中展示了APPFLx的效用:(1)从心电图(ECG)波形预测参与者年龄,以及(2)从胸部X光片中检测COVID-19疾病。在此,ML模型在异构计算资源上进行了安全训练,包括本地高性能计算和云计算设施的组合。通过在不直接共享的情况下安全地解锁来自多个来源的数据进行训练,与集中训练模型相比,这些FL模型提高了泛化能力和性能,同时确保数据得到保护。总之,APPFLx证明了自己是一个易于使用的框架,可在维护私人医疗数据保护的同时,加速跨组织和医疗系统对大型数据集的生物医学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911d/11782895/af1864ae3c32/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验