Shi Chuan, Eskandari Roozbeh, Zhang Jianye, Zhang Guofang, Li Li, Hawkins Deandrea, Zhu Xiongwei, Tochtrop Gregory P
Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106.
Department of Medicine, Duke University School of Medicine, Durham, NC 27701.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2415039122. doi: 10.1073/pnas.2415039122. Epub 2025 Feb 3.
Lipid peroxidation is a complex biochemical process associated with oxidative stress, and its products play crucial roles in cellular signaling and the pathophysiology of many diseases. Among the diverse array of lipid peroxidation (LPO) products, epoxyketooctadecenoic acids (EKODEs) have emerged as intriguing molecules with potential impacts on inflammatory diseases. EKODEs arise from linoleic acid reacting with reactive oxygen and nitrogen species present during inflammation. A hallmark of many LPO products is an electrophilic chemical functionality that can react with different biological nucleophiles to form adducts that impact a broad swath of physiologic processes. Here, we present the identification of reactivity patterns exhibited by the EKODE class of LPO products that arise due to the unique chemistry of the EKODE electrophiles, namely α, β-unsaturated epoxyketones of variable regiochemistry. Our initial investigations with models of the EKODE reactive core showed that surrogates of lysine did not react, and histidine nucleophiles formed reversible Michael adducts. However, when models of cysteine nucleophiles were tested, a unique reactivity profile emerged where rapid Michael addition was followed by slow rearrangement and epoxide opening at an unpredicted electrophilic site, affording what we postulated to be an advanced lipoxidation end product (ALE). After confirming the EKODE reactivity in model systems, we produced polyclonal antibodies of a stable epitope of the EKODE-based ALE and used these antibodies to investigate an approach for in vivo monitoring of inflammatory disease progression.
脂质过氧化是一个与氧化应激相关的复杂生化过程,其产物在细胞信号传导和许多疾病的病理生理学中发挥着关键作用。在各种各样的脂质过氧化(LPO)产物中,环氧酮十八碳烯酸(EKODEs)已成为具有潜在影响炎症性疾病的有趣分子。EKODEs源于亚油酸与炎症过程中存在的活性氧和氮物种发生反应。许多LPO产物的一个标志是亲电化学官能团,它可以与不同的生物亲核试剂反应形成加合物,从而影响广泛的生理过程。在此,我们展示了由于EKODE亲电试剂的独特化学性质(即具有可变区域化学的α,β-不饱和环氧酮)而产生的LPO产物EKODE类所表现出的反应模式。我们对EKODE反应核心模型的初步研究表明,赖氨酸的替代物不发生反应,而组氨酸亲核试剂形成可逆的迈克尔加合物。然而,当测试半胱氨酸亲核试剂模型时,出现了一种独特的反应特征,即快速的迈克尔加成之后是缓慢的重排以及在一个未预测的亲电位点处的环氧开环,产生了我们推测为晚期脂质氧化终产物(ALE)的物质。在确认了模型系统中的EKODE反应性之后,我们制备了基于EKODE的ALE稳定表位的多克隆抗体,并使用这些抗体来研究一种体内监测炎症性疾病进展的方法。