Suppr超能文献

早期乳腺癌的多模态数据整合

Multimodal data integration in early-stage breast cancer.

作者信息

Llinas-Bertran Arnau, Butjosa-Espín Maria, Barberi Vittoria, Seoane Jose A

机构信息

Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

Breast Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

出版信息

Breast. 2025 Apr;80:103892. doi: 10.1016/j.breast.2025.103892. Epub 2025 Jan 28.

Abstract

The use of biomarkers in breast cancer has significantly improved patient outcomes through targeted therapies, such as hormone therapy anti-Her2 therapy and CDK4/6 or PARP inhibitors. However, existing knowledge does not fully encompass the diverse nature of breast cancer, particularly in triple-negative tumors. The integration of multi-omics and multimodal data has the potential to provide new insights into biological processes, to improve breast cancer patient stratification, enhance prognosis and response prediction, and identify new biomarkers. This review presents a comprehensive overview of the state-of-the-art multimodal (including molecular and image) data integration algorithms developed and with applicability to breast cancer stratification, prognosis, or biomarker identification. We examined the primary challenges and opportunities of these multimodal data integration algorithms, including their advantages, limitations, and critical considerations for future research. We aimed to describe models that are not only academically and preclinically relevant, but also applicable to clinical settings.

摘要

通过激素疗法、抗人表皮生长因子受体2(Her2)疗法以及细胞周期蛋白依赖性激酶4/6(CDK4/6)或聚(ADP-核糖)聚合酶(PARP)抑制剂等靶向治疗,生物标志物在乳腺癌治疗中的应用显著改善了患者的治疗效果。然而,现有的知识尚未完全涵盖乳腺癌的多样性,尤其是三阴性肿瘤。多组学和多模态数据的整合有可能为生物学过程提供新的见解,改善乳腺癌患者的分层,增强预后和反应预测,并识别新的生物标志物。本文综述了已开发的、适用于乳腺癌分层、预后或生物标志物识别的多模态(包括分子和影像)数据整合算法的最新进展。我们研究了这些多模态数据整合算法的主要挑战和机遇,包括它们的优点、局限性以及未来研究的关键考虑因素。我们旨在描述不仅在学术和临床前相关,而且适用于临床环境的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e18/11973824/33a710b4e25c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验