Suppr超能文献

通过逆转录定量聚合酶链反应检测单转录因子基因表达用于小细胞肺癌亚型分型的潜力

The Potential of Single-Transcription Factor Gene Expression by RT-qPCR for Subtyping Small Cell Lung Cancer.

作者信息

Iñañez Albert, Del Rey-Vergara Raúl, Quimis Fabricio, Rocha Pedro, Galindo Miguel, Menéndez Sílvia, Masfarré Laura, Sánchez Ignacio, Carpes Marina, Martínez Carlos, Pérez-Buira Sandra, Rojo Federico, Rovira Ana, Arriola Edurne

机构信息

Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain.

Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain.

出版信息

Int J Mol Sci. 2025 Feb 3;26(3):1293. doi: 10.3390/ijms26031293.

Abstract

Complex RNA-seq signatures involving the transcription factors , , and classify Small Cell Lung Cancer (SCLC) into four subtypes: SCLC-A, SCLC-N, SCLC-P, and SCLC-I (triple negative or inflamed). Preliminary studies suggest that identifying these subtypes can guide targeted therapies and potentially improve outcomes. This study aims to evaluate whether the expression levels of these three key transcription factors can effectively classify SCLC subtypes, comparable to the use of individual antibodies in immunohistochemical (IHC) analysis of formalin-fixed, paraffin-embedded (FFPE) tumor samples. We analyzed preclinical models of increasing complexity, including eleven human and five mouse SCLC cell lines, six patient-derived xenografts (PDXs), and two circulating tumor cell (CTC)-derived xenografts (CDXs) generated in our laboratory. RT-qPCR conditions were established to detect the expression levels of , , and . Additionally, protein-level analysis was performed using Western blot for cell lines and IHC for FFPE samples of PDX and CDX tumors, following our experience with patient tumor samples from the CANTABRICO trial (NCT04712903). We found that the analyzed SCLC cell line models predominantly expressed , , and , or showed no expression, as identified by RT-qPCR, consistently matching the previously assigned subtypes for each cell line. The classification of PDX and CDX models demonstrated consistency between RT-qPCR and IHC analyses of the transcription factors. Our results show that single-gene analysis by RT-qPCR from FFPE-extracted RNA simplifies SCLC subtype classification. This approach provides a cost-effective alternative to IHC staining or expensive multi-gene RNA sequencing panels, making SCLC subtyping more accessible for both preclinical research and clinical applications.

摘要

涉及转录因子、和的复杂RNA测序特征将小细胞肺癌(SCLC)分为四种亚型:SCLC-A、SCLC-N、SCLC-P和SCLC-I(三阴性或炎症性)。初步研究表明,识别这些亚型可指导靶向治疗并可能改善治疗结果。本研究旨在评估这三种关键转录因子的表达水平是否能有效区分SCLC亚型,其效果与在福尔马林固定、石蜡包埋(FFPE)肿瘤样本的免疫组织化学(IHC)分析中使用单个抗体相当。我们分析了复杂性不断增加的临床前模型,包括11个人类和5个小鼠SCLC细胞系、6个患者来源的异种移植瘤(PDX)以及我们实验室生成的2个循环肿瘤细胞(CTC)来源的异种移植瘤(CDX)。建立了RT-qPCR条件以检测、和的表达水平。此外,根据我们在CANTABRICO试验(NCT04712903)患者肿瘤样本方面的经验,对细胞系进行了蛋白质水平分析,采用蛋白质免疫印迹法,对PDX和CDX肿瘤的FFPE样本进行了IHC分析。我们发现,通过RT-qPCR鉴定,所分析的SCLC细胞系模型主要表达、和,或无表达,这与之前为每个细胞系指定的亚型一致。PDX和CDX模型的分类显示了转录因子的RT-qPCR和IHC分析之间的一致性。我们的结果表明,从FFPE提取的RNA进行RT-qPCR单基因分析简化了SCLC亚型分类。这种方法为IHC染色或昂贵的多基因RNA测序面板提供了一种经济高效的替代方案,使SCLC亚型分类在临床前研究和临床应用中更容易实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c49/11818609/b1d44c9437d1/ijms-26-01293-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验