Suppr超能文献

儿科泌尿外科人工智能模型的实时范围综述与在线知识库:AI-PEDURO合作项目的结果

A living scoping review and online repository of artificial intelligence models in pediatric urology: Results from the AI-PEDURO collaborative.

作者信息

Khondker Adree, Kwong Jethro Cc, Ahmad Ihtisham, Rajesh Zwetlana, Dhalla Rahim, MacNevin Wyatt, Rickard Mandy, Erdman Lauren, Gabrielson Andrew T, Nguyen David-Dan, Kim Jin Kyu, Abbas Tariq, Fernandez Nicolas, Fischer Katherine, T Hoen Lisette A, Keefe Daniel T, Nelson Caleb P, Viteri Bernarda, Wang Hsin-Hsiao Scott, Weaver John, Yadav Priyank, Lorenzo Armando J

机构信息

Division of Urology, The Hospital for Sick Children, Toronto, ON, Canada; Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada.

Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada; Temerty School of Medicine, University of Toronto, Toronto, ON, Canada.

出版信息

J Pediatr Urol. 2025 Jun;21(3):765-772. doi: 10.1016/j.jpurol.2025.01.035. Epub 2025 Feb 5.

Abstract

INTRODUCTION

Artificial intelligence (AI) is increasingly being applied across pediatric urology. We provide a living scoping review and online repository developed by the AI in PEDiatric UROlogy (AI-PEDURO) collaborative that summarizes the current and emerging evidence on the AI models developed in pediatric urology.

MATERIAL AND METHODS

The protocol was published a priori, and Preferred Reporting Items for Systematic Review and Meta-analysis Scoping Review (PRISMA-ScR) guidelines were followed. We conducted a comprehensive search of four electronic databases and reviewed relevant data sources from inception until June 2024 to identify studies that have implemented AI for prediction, classification, or risk stratification for pediatric urology conditions. Model quality was assessed by the APPRAISE-AI tool.

RESULTS

Overall, 59 studies were included in this review from 1557 unique records. Of the 59 published studies, 44 studies (75 %) were published after 2019, with hydronephrosis and vesicoureteral reflux/urinary tract infection as the most common topics (17 studies, 28 % each). Studies originated from USA (22 studies, 37 %), Canada (10 studies, 17 %), China (8 studies, 14 %), and Turkey (7 studies, 12 %). Neural network (35 studies, 59 %), support-vector-machine (21 studies, 36 %), and tree-based models (19 studies, 32 %) were the most used machine learning algorithms, with 14 studies (24 %) providing useable repositories or applications. APPRAISE-AI assessed 12 studies (20 %) of studies as low quality, 39 studies (66 %) as moderate quality, and 8 studies (14 %) as high quality, with specific improvements noted in model robustness and reporting standards over time (p = 0.03). Findings were synthesized into an online repository (www.aipeduro.com).

DISCUSSION

There is an increasing pace of AI model development in pediatric urology. Model topics are broad, algorithm choice is diverse, and the overall quality of models are improving over time. While there is still a lack of clinical translation of the AI models in pediatric urology, the usage of online repositories and reporting frameworks can facilitate sharing, improvement, and clinical implementation of future models.

CONCLUSIONS

This living scoping review and online repository will highlight the current landscape of AI models in pediatric urology and facilitate their clinical translation and inform future research initiatives. From this work, we provide a summary of recommendations based on the current literature for future studies.

摘要

引言

人工智能(AI)在小儿泌尿外科的应用日益广泛。我们提供了一份由小儿泌尿外科人工智能(AI-PEDURO)协作组开发的动态范围综述和在线知识库,该综述总结了小儿泌尿外科领域开发的人工智能模型的现有和新出现的证据。

材料与方法

该方案已预先发表,并遵循系统评价和Meta分析范围综述的首选报告项目(PRISMA-ScR)指南。我们对四个电子数据库进行了全面检索,并回顾了从数据库建立到2024年6月的相关数据源,以识别将人工智能用于小儿泌尿外科疾病预测、分类或风险分层的研究。模型质量由APPRAISE-AI工具评估。

结果

总体而言,本综述纳入了来自1557条独特记录中的59项研究。在这59项已发表的研究中,44项研究(75%)于2019年后发表,肾盂积水和膀胱输尿管反流/尿路感染是最常见的主题(各17项研究,占28%)。研究来自美国(22项研究,占37%)、加拿大(10项研究,占17%)、中国(8项研究,占14%)和土耳其(7项研究,占12%)。神经网络(35项研究,占59%)、支持向量机(21项研究,占36%)和基于树的模型(19项研究,占32%)是最常用的机器学习算法,14项研究(24%)提供了可用的知识库或应用程序。APPRAISE-AI将12项研究(20%)评估为低质量,39项研究(66%)为中等质量,8项研究(14%)为高质量,随着时间推移,模型稳健性和报告标准有了具体改进(p = 0.03)。研究结果被整合到一个在线知识库(www.aipeduro.com)中。

讨论

小儿泌尿外科人工智能模型的开发速度在不断加快。模型主题广泛,算法选择多样,模型的整体质量也在随着时间的推移而提高。虽然小儿泌尿外科人工智能模型仍缺乏临床转化,但在线知识库和报告框架的使用可以促进未来模型的共享、改进和临床应用。

结论

本动态范围综述和在线知识库将突出小儿泌尿外科人工智能模型的现状,促进其临床转化,并为未来的研究计划提供信息。通过这项工作,我们根据当前文献为未来研究提供了一份建议总结。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验