Suppr超能文献

通过差异甲基化分析和基于机器学习的验证,鉴定出17种与焦虑症相关的新型表观遗传生物标志物。

Identification of 17 novel epigenetic biomarkers associated with anxiety disorders using differential methylation analysis followed by machine learning-based validation.

作者信息

Kwon Yoonsung, Blazyte Asta, Jeon Yeonsu, Kim Yeo Jin, An Kyungwhan, Jeon Sungwon, Ryu Hyojung, Shin Dong-Hyun, Ahn Jihye, Um Hyojin, Kang Younghui, Bak Hyebin, Kim Byoung-Chul, Lee Semin, Jung Hyung-Tae, Shin Eun-Seok, Bhak Jong

机构信息

Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.

Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.

出版信息

Clin Epigenetics. 2025 Feb 17;17(1):24. doi: 10.1186/s13148-025-01819-x.

Abstract

BACKGROUND

The changes in DNA methylation patterns may reflect both physical and mental well-being, the latter being a relatively unexplored avenue in terms of clinical utility for psychiatric disorders. In this study, our objective was to identify the methylation-based biomarkers for anxiety disorders and subsequently validate their reliability.

METHODS

A comparative differential methylation analysis was performed on whole blood samples from 94 anxiety disorder patients and 296 control samples using targeted bisulfite sequencing. Subsequent validation of identified biomarkers employed an artificial intelligence-based risk prediction models: a linear calculation-based methylation risk score model and two tree-based machine learning models: Random Forest and XGBoost.

RESULTS

Seventeen novel epigenetic methylation biomarkers were identified to be associated with anxiety disorders. These biomarkers were predominantly localized near CpG islands, and they were associated with two distinct biological processes: 1) cell apoptosis and mitochondrial dysfunction and 2) the regulation of neurosignaling. We further developed a robust diagnostic risk prediction system to classify anxiety disorders from healthy controls using the 17 biomarkers. Machine learning validation confirmed the robustness of our biomarker set, with XGBoost as the best-performing algorithm, an area under the curve of 0.876.

CONCLUSION

Our findings support the potential of blood liquid biopsy in enhancing the clinical utility of anxiety disorder diagnostics. This unique set of epigenetic biomarkers holds the potential for early diagnosis, prediction of treatment efficacy, continuous monitoring, health screening, and the delivery of personalized therapeutic interventions for individuals affected by anxiety disorders.

摘要

背景

DNA甲基化模式的变化可能反映身心健康状况,就精神疾病的临床应用而言,后者是一个相对未被探索的领域。在本研究中,我们的目标是识别焦虑症基于甲基化的生物标志物,并随后验证其可靠性。

方法

使用靶向亚硫酸氢盐测序对94例焦虑症患者的全血样本和296例对照样本进行比较性差异甲基化分析。随后对已识别的生物标志物进行验证,采用基于人工智能的风险预测模型:基于线性计算的甲基化风险评分模型和两种基于树的机器学习模型:随机森林和极端梯度提升。

结果

确定了17种与焦虑症相关的新型表观遗传甲基化生物标志物。这些生物标志物主要位于CpG岛附近,并且与两个不同的生物学过程相关:1)细胞凋亡和线粒体功能障碍,以及2)神经信号调节。我们进一步开发了一个强大的诊断风险预测系统,使用这17种生物标志物将焦虑症与健康对照进行分类。机器学习验证证实了我们的生物标志物集的稳健性,极端梯度提升是表现最佳的算法,曲线下面积为0.876。

结论

我们的研究结果支持血液液体活检在提高焦虑症诊断临床应用方面的潜力。这组独特的表观遗传生物标志物具有早期诊断、预测治疗效果、持续监测、健康筛查以及为受焦虑症影响的个体提供个性化治疗干预的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验