Saferali Aabida, Wienecke Anastacia N, Xu Zhonghui, Liu Tao, Sheynkman Gloria M, Hersh Craig P, Cho Michael H, Silverman Edwin K, Zhou Xiaobo, Wilson Carole L, Schnapp Lynn M, Randell Scott H, Ramos Silvia B V, Laederach Alain, Vollmers Christopher, Castaldi Peter J
Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Eur Respir J. 2025 Apr 3;65(4). doi: 10.1183/13993003.01407-2024. Print 2025 Apr.
Identification of COPD disease-causing genes is an important tool for understanding why COPD develops, who is at highest COPD risk and how new COPD treatments can be developed. Previous COPD genetic studies have identified a highly significant genetic association near (nephronectin), a gene involved in tissue repair, but the biological mechanisms underlying this association are unknown.
Splicing quantitative trait locus (sQTL) analysis was performed to identify common genetic variants that alter RNA splicing in lung tissues. These lung sQTL signals were compared to COPD genetic association results near the gene using colocalisation analysis to determine whether genetic risk for COPD in this region may act through altered splicing. Long-read sequencing characterised COPD-associated splicing events at isoform-level resolution and protein structural analysis identified likely functional effects of this alternative splicing.
An established COPD genetic risk variant, rs34712979-A, creates a cryptic splice acceptor site that causes four separate splicing changes in . The only one of these splicing changes that was associated with COPD phenotypes involved a cassette exon (exon 3). Long-read RNA sequencing demonstrated that the COPD risk allele causes a shift in isoform usage away from the dominant isoform B precursor, which excludes exon 3, to the isoform A precursor, which splices-in exon 3. AlphaFold protein structural analysis reveals that inclusion of this exon disrupts an epidermal growth factor-like functional domain in NPNT.
Genetic variants in the gene increase COPD risk by changing RNA splicing of in the lung.
鉴定慢性阻塞性肺疾病(COPD)致病基因是理解COPD发病原因、确定COPD高危人群以及开发新型COPD治疗方法的重要工具。既往COPD基因研究已在nephronectin(NPNT,参与组织修复的基因)附近鉴定出高度显著的基因关联,但这种关联背后的生物学机制尚不清楚。
进行剪接定量性状位点(sQTL)分析以鉴定改变肺组织中RNA剪接的常见遗传变异。使用共定位分析将这些肺sQTL信号与NPNT基因附近的COPD基因关联结果进行比较,以确定该区域COPD的遗传风险是否可能通过改变剪接起作用。长读长测序在异构体水平分辨率上表征了与COPD相关的剪接事件,并且NPNT蛋白结构分析确定了这种可变剪接可能的功能影响。
一个已确定的COPD遗传风险变异rs34712979 - A,产生了一个隐蔽的剪接受体位点,导致NPNT发生四个独立的剪接变化。这些剪接变化中唯一与COPD表型相关的涉及一个盒式外显子(外显子3)。长读长RNA测序表明,COPD风险等位基因导致异构体使用从排除外显子3的显性NPNT异构体B前体转向剪接入外显子3的异构体A前体。AlphaFold蛋白结构分析表明,该外显子的包含破坏了NPNT中的一个表皮生长因子样功能域。
NPNT基因中的遗传变异通过改变肺中NPNT的RNA剪接增加COPD风险。